Answer:
Vx = 35 x cos(13deg)
Vy = 35 x sin(13deg) - gt
(g is acceleration due to gravity =~9.8 meter/second^2, t is time in second)
Explanation:
The tiger leaps up, then x and y component of its velocity are:
Vx = Vo x cos(alpha)
Vy = Vo x sin(alpha) - gt
(Vo is tiger's initial velocity, alpha is angle between its leaping direction and horizontal plane)
Hope this helps!
Answer:
88 m/s
Explanation:
To solve the problem, we can use the following SUVAT equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
d is the distance covered
For the car in this problem, we have
d = 484 m is the stopping distance
v = 0 is the final velocity
is the acceleration
Solving for u, we find the initial velocity:

Any object that is launched as a projectile will lose speed and, as a result, altitude, as it travels through the air. The rate at which the object loses speed and altitude depends on the amount of force that way applied to it when it was launched. It is also dependent on the size and shape of the item. This is why something like, say, a football is much faster to fall to the ground than a bullet.
Answer:
people grow by the year sometimes it even by months
The heat capacity and the specific heat