A gaseous product is formed
Answer:
CCl4- tetrahedral bond angle 109°
PF3 - trigonal pyramidal bond angles less than 109°
OF2- Bent with bond angle much less than 109°
I3 - linear with bond angles = 180°
A molecule with two double bonds and no lone pairs - linear molecule with bond angle =180°
Explanation:
Valence shell electron-pair repulsion theory (VSEPR theory) helps us to predict the molecular shape, including bond angles around a central atom, of a molecule by examination of the number of bonds and lone electron pairs in its Lewis structure. The VSEPR model assumes that electron pairs in the valence shell of a central atom will adopt an arrangement which tends to minimize repulsions between these electron pairs by maximizing the distance between them. The electrons in the valence shell of a central atom are either bonding pairs of electrons, located primarily between bonded atoms, or lone pairs. The electrostatic repulsion of these electrons is reduced when the various regions of high electron density assume positions as far apart from each other as possible.
Lone pairs and multiple bonds are known to cause more repulsion than single bonds and bond pairs. Hence the presence of lone pairs or multiple bonds tend to distort the molecular geometry geometry away from that predicted on the basis of VSEPR theory. For instance CCl4 is tetrahedral with no lone pair and four regions of electron density around the central atom. This is the expected geometry. However OF2 also has four regions of electron density but has a bent structure. The molecule has four regions of electron density but two of them are lone pairs causing more repulsion. Hence the observed bond angle is less than 109°.
The time it took her to drive 2 km is 11.43 seconds, because sonverting kilometers to meters, it is 1000 meters to every kilometer, and she travels 2 kilometers, which is two-thousand meters. Then to find the time you need to divide the time by the speed, and with that you get 11.4285714286, or 11.43 seconds.
Answer:
It is equal to the number of moles of acid that reacted. When Oxalic acid is your limiting reactant it is the # of moles of oxalic acid used. When NaOH is your limiting reactant it is equal to the number of moles of NaOH used.
Answer:
what the acctual fhuck typa chinese algorithim is dis, youve got me bamboozled frffr
Explanation:
jk jk.........
__5___SiO2 + ___2___CaC2 → __5___Si + ____2___CaO + __4___CO2