Answer:
A) CH3CH2SH
Explanation:
Dispersion forces are weak attractions found between non-polar and polar molecules. The attractions here can be attributed to the fact that a non-polar molecule sometimes become polar because the constant motion of its electrons may lead to an uneven charge distribution at an instant. If this happens, the molecule has a temporary dipole. This dipole can induce the neighbouring molecules to be distorted and form dipoles as well. The attractions between these dipoles constitute the Dispersion Forces.
Therefore; the greater the molar mass of a compound or molecule, the higher the Dispersion Force. This implies that the compound or molecule with the highest molar mass have the largest dispersion forces.
Now; for option (A)
CH3CH2SH
The molar mass is :
= (12 + (1 × 3 ) +12 + (1 ×2) + 32+1)
= (12 + 3+ 12 + 2 + 32 + 1)
= 62 g/mol
For option (B)
CH3NH2
The molar mass is:
= (12 + (1 × 3 ) +14 + (1 × 2)
= (12 + 3 + 14 + 2)
= 31 g/mol
For option (C)
CH4
The molar mass is :
= 12 + (1 × 4)
= 12 + 4
= 16 g/mol
For option (D)
CH3CH3
The molar mass is :
= 12 + ( 1 × 3 ) + 12 + ( 1 × 3)
= 12 + 3 + 12 + 3
= 30 g/mol
Thus ; option (A) has the highest molar mass, as such the largest dispersion force is A) CH3CH2SH
First, isotopes <u>are the atoms of a single element whose nuclei have a different number of neutrons</u>, and therefore, differ in mass numbers. You should know that atoms are formed by a nucleus that has a small size and is made up of protons and neutrons. The nucleus is surrounded by a cloud of electrons, which are found in a region of the atom called the cortex.
The mass number, represented as A, <u>is the sum of the number of protons and neutrons in the nucleus</u>. On the other hand, the atomic number (Z) is <u>the number of protons that exist in the nucleus.
</u>
The isotopes of an element X are represented as follows,
<em>(see first attached picture)</em>
It should be noted that the number of neutrons of a chemical element can be calculated as the difference A-Z.
<u>The atomic and mass numbers of bismuth with 125 neutrons are</u>:
Z = 83
A = 83 + 125 = 208
Thus, the atomic symbol of the bismuth isotope with 125 neutrons is:
<em>(see second attached picture)</em>
First convert celcius to Kelvin.
20 + 273 = 293K
31 + 273 = 304K
Now we can set up an equation based on the information we have.
V1 = 5
P1 = 365
T1 = 293
V2 = 5
P1 = x
T2 = 304
The equation be: 
Now just solve.
1825/293 = 5x/304
Cross multiply.
554800 = 1465x
Divide both sides by 1465
x = 378.7030717 which can then be rounded to 378.7 mmHg
Answer:
0.675 atm
513 Torr
Explanation:
Given is that, the atmospheric pressure on the surface of Venus is
6.84 X 10⁴ Pa.
1 atm (atmospheric pressure) is equal to 101325 pascal (Pa).
To convert divide the pressure value by 101325.
Pressure in atm = 
= 0.675055 atm
Rounding it off to 3 significant digits: 0.675 atm
Now, one Torr is 133.322 Pa. For conversion, divide the pressure value by 133.322.
Pressure in Torr = 
=513.04219 Torr
Rounding it off to 3 significant digits: 513 Torr
Answer:
A. Diethyl ether will react with the alkenes that were formed in the experiment.
Explanation:
Ethers such as diethyl ether dissolve a wide range of polar and nonpolar organic compounds. Nonpolar compounds are generally more soluble in diethyl ether than alcohols because ethers do not have a hydrogen bonding network that must be broken up to dissolve the solute.