Answer:
4.1 moles
Explanation:
Applying
PV = nRT................ equation 1
Where P = pressure, V = volume, n = number of moles, R = molar gas constant, T = Temperature.
make n the subject of the equation
n = PV/RT.............. Equation 2
From the question,
Given: V = 35 L , P = 2.8 atm, T = 15 °C = (15+273) = 288 K, R = 0.083 L.atm/K.mol
Substitute these values into equation 2
n = (35×2.8)/(0.083×288)
n = 4.1 moles
Answer:
177.277amu
Explanation:
the total occuring isotopes for Hafnium is =6.
First isotope had an atomic weight of 173.940amu
Second isotope =175.941amu
Third isotope =176.943amu
Fourth isotope=177.944amu
Fifth isotope. =178.946amu
sixth isotope .179.947amu
<em>Avera</em><em>ge</em><em> </em><em>ato</em><em>mic</em><em> </em><em>wei</em><em>ght</em><em> </em><em>of</em><em> </em><em>Haf</em><em>nium</em><em>=</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>all</em><em> </em><em>the </em><em>atomi</em><em>c</em><em> </em><em>weights</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>iso</em><em>topes</em><em>/</em><em> </em><em>Tota</em><em>l</em><em> </em><em>occu</em><em>ring</em><em> </em><em>isotopes</em>
Thus, 173.940amu+175.941amu+176.943amu+177.944amu+178.946amu+179.947amu.= 1063.661amu
Average atomic weight= 1063.661amu /6 = 177.2768333amu
= 177.277amu to 3 decimal places.
Answer:Chemistry problems can be solved using a variety of techniques.
Explanation: Many chemistry teachers and most introductory chemistry texts illustrate problem solutions using the factor-label method. ... The use of analogies and schematic diagrams results in higher achievement on problems involving moles, stoichiometry, and molarity. Hope this helped!
Answer:
2.387 mol/L
Explanation:
The reaction that takes place is:
- 2HCl + Ba(OH)₂ → BaCl₂ + 2H₂O
First we <u>calculate how many moles of each reagent were added</u>:
- HCl ⇒ 200.0 mL * 3.85 M = 203.85 mmol HCl
- Ba(OH)₂ ⇒ 100.0 mL * 4.6 M = 460 mmol Ba(OH)₂
460 mmol of Ba(OH)₂ would react completely with (2*460) 920 mmol of HCl. There are not as many mmoles of HCl so Ba(OH)₂ will remain in excess.
Now we <u>calculate how many moles of Ba(OH)₂ reacted</u>, by c<em>onverting the total number of HCl moles to Ba(OH)₂ moles</em>:
- 203.85 mmol HCl *
= 101.925 mmol Ba(OH)₂
This means the remaining Ba(OH)₂ is:
- 460 mmol - 101.925 mmol = 358.075 mmoles Ba(OH)₂
There are two OH⁻ moles per Ba(OH)₂ mol:
- OH⁻ moles = 2 * 358.075 = 716.15 mmol OH⁻
Finally we <u>divide the number of OH⁻ moles by the </u><u><em>total</em></u><u> volume</u> (100 mL + 200 mL):
- 716.15 mmol OH⁻ / 300.0 mL = 2.387 M
So the answer is 2.387 mol/L
Electrolysis can be used to separate a substance into its original components/elements and it was through this process that a number of elements have been discovered and are still produced in today's industry.