Metallic solids or metallic structures experience metallic bonds which are the forces of attractions between the sea of electrons and the nucleus of the metallic atoms. They share a network of highly delocalized electrons.
I therefore think that the packing efficiency decreases as the number of nearest neighbors decreases.
When a capacitor has a potential difference between the plates it is said to be Constant.
Both plates have different charge which signifies that one has higher potential than the other.
Therefore, when we join them in parallel, charge will flow from higher to lower. and it continued to flow until equilibrium (the entire process took only a few seconds), indicating that the potential remains constant.
To learn more about constant potential difference in capacitor visit:
brainly.com/question/3480856
#SPJ4
Chromium is a metal in nature. So when one chromium is
bonded to another chromium, there is a weak intermolecular forces which helds
them together which we call as “metallic bonding”.
Metallic bonding is the intermolecular force of attraction which
exist between valence electrons and the metal atoms. It is considered as the
sharing of various detached electrons between many positive ions, whereby the
electrons serve as a "glue" which gives the substance a definite
structure.
Answer: 12.78ml
Explanation:
Given that:
Volume of KOH Vb = ?
Concentration of KOH Cb = 0.149 m
Volume of HBr Va = 17.0 ml
Concentration of HBr Ca = 0.112 m
The equation is as follows
HBr(aq) + KOH(aq) --> KBr(aq) + H2O(l)
and the mole ratio of HBr to KOH is 1:1 (Na, Number of moles of HBr is 1; while Nb, number of moles of KOH is 1)
Then, to get the volume of a 0.149 m potassium hydroxide solution Vb, apply the formula (Ca x Va)/(Cb x Vb) = Na/Nb
(0.112 x 17.0)/(0.149 x Vb) = 1/1
(1.904)/(0.149Vb) = 1/1
cross multiply
1.904 x 1 = 0.149Vb x 1
1.904 = 0.149Vb
divide both sides by 0.149
1.904/0.149 = 0.149Vb/0.149
12.78ml = Vb
Thus, 12.78 ml of potassium hydroxide solution is required.