Answer:
(a) Between methanol (CH₃OH) and glycerol (C₃H₅(OH)₃), the substance with the higher surface tension is glycerol (C₃H₅(OH)₃)
(b) Between tetrabromomethane (CBr₄) and chloroform (CHCl₃), the substance with the higher surface tension is chloroform (CHCl₃)
Explanation:
The surface tension of these substances at 20 °C given in mN/m, is as follows:
The surface tension of Methanol is 22.70
The surface tension of Tetrabromomethane is 26.95
The surface tension of Glycerol is 64.00
The surface tension of Chloroform is 27.50
(a) Between methanol (CH₃OH) and glycerol (C₃H₅(OH)₃), the substance with the higher surface tension is glycerol (C₃H₅(OH)₃)
(b) Between tetrabromomethane (CBr₄) and chloroform (CHCl₃), the substance with the higher surface tension is chloroform (CHCl₃)
Answer:
d. The gold(III) ion is most easily reduced.
Explanation:
The standard reduction potentials are
Au³⁺ + 3e⁻ ⟶ Au; 1.50 V
Hg²⁺ + 2e⁻ ⟶ Hg; 0.85 V
Zn²⁺ + 2e⁻ ⟶ Zn; -0.76 V
Na⁺ + e⁻ ⟶ Na; -2.71 V
A <em>more positive voltage</em> means that there is a <em>stronger driving force</em> for the reaction.
Thus, Au³⁺ is the best acceptor of electrons.
Reduction Is Gain of electrons and, Au³⁺ is gaining electrons, so
Au³⁺ is most easily reduced.
Answer:
Atoms of metal elements give away electrons in their reactions to form positive ions. The ions formed have a full outer electron shell, so are very stable.
Explanation:
To become stable, the metal atom wants to get rid of one or more electrons in its outer shell. ... Alternately, an atom that loses electrons becomes a positively charged ion (aka cations). The particles in an ionic compound are held together because there are oppositely charged particles that are attracted to one another.
The correct option is D.
During peptide formation, when two amino acids come together, a hydrogen atom and two molecules of oxygen are released in form of water molecules. The amino acid that present the carboxyl group to the reaction loses an hydroxyl group while the amino acid that present the amino group to the reaction loses a hydrogen.