Answer:
Let the mass of the book be "m", acceleration due to gravity be "g", velocity be "v" and height be "h".
Now if we are holding a book at a certain height (h), <em><u>the potential energy will be maximum which is equal to mass× acceleration due to gravity× height (= mgh)</u>.</em>
(Remember: kinetic energy =0)
Now we consider that the book is dropped, in this case a force will act downward towards the centre of the earth, <em><u>Force= mass× acceleration due to gravity (F=mg)</u></em>. It is equal to the weight of the book.
While the book is falling, the potential energy stored in the book converts into kinetic energy and strikes the floor with <em><u>the maximum kinetic energy= (1/2)×mass×velocity² (=1/2mv²)</u>.</em>
(Remember: kinetic energy=0)
Due to this process the whole energy is conserved.
As the potential energy decreases kinetic energy increases.
Answer:
Part a)

Part b)

Explanation:
As we know that magnetic flux through the loop is given as

now we have

now rate of change in flux is given as

now we know that



Now plug in all data


Part b)
Now the radius of the loop after t = 1 s



Now plug in data in above equation


Yes I would expect them too
Answer:
840 cm
Explanation:
Note: A hydraulic press operate based on pascal's principle.
From pascal's principle
W₁/d₁ = W₂/d₂...................... Equation 1
Where W₁ and W₂ are the first and second weight, and d₁ and d₂ are the first and second diameter of the piston.
make d₁ the subject of the equation
d₁ = W₁×d₂/W₂................ Equation 2
Given: W₁ = 2100 kg, W₂ = 25 kg, d₂ = 10 cm = 0.1 m.
Substitute these values into equation 2
d₁ = 2100(0.1)/25
d₁ = 8.4 m
d₁ = 840 cm
Answer:
when the steam starts coming out
Explanation: