E=(mV^2)/2
m=1000kg, V=20m/s
then, E=(1000kg*(20m/s)^2)/2
E=(1000*400)/2 J = 200000J
Magna Carta. I’m pretty sure it’s the correct answer.
Answer:
The acceleration of the car, a = -3.75 m/s²
Explanation:
Given data,
The initial velocity of the airplane, u = 75 m/s
The final velocity of the plane, v = 0 m/s
The time period of motion, t = 20 s
Using the I equations of motion
v = u + at
a = (v - u) / t
= (0 - 75) / 20
= -3.75 m/s²
The negative sign indicates that the plane is decelerating
Hence, the acceleration of the car, a = -3.75 m/s²
Answer:
- 0.3sin6000t A
Explanation:
Voltage, v = 10 cos 6000t V
Capacitance = 5-uF
Current flowing through, i(t)
i(t) = c * d/dt (V)
c = 5-uF = 5 * 10^-6 F
i(t) = (5 * 10^-6) * d/dt(10 cos 6000t)
d/dt(10 cos 6000t) = (10 * 6000) * (-sin 6000t)
Hence,
i(t) = (5*10^-6) * (10*6000) * (-sin 6000t)
i(t) = 5*10^-6 * 6*10^4 * - sin6000t
i(t) = 30 * 10^-2 * - sin6000t
i(t) = 0.3*-sin6000t
i(t) = - 0.3sin6000t Ampere
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
shear stress is the measure of the material's resistance to cause "sliding" motion of its layers.
<span>Since the hero has to take a cylindrical piece of metal out, the area which will cause this force is 2*pi*r*l (put r and l in SI units to get answer in Newtons) </span>
<span>so the force required is shear strength into this area (2.60109 * 2 * pi * r * l) </span>