Answer:
To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.
Explanation:
The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]
For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.
As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.
Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.
Answer:
3525.19 kg
Explanation:
The computation of the mass of the car is shown below:
As we know that
Fc = m × V^2 ÷ R
m = Fc × R ÷ V^2
Provided that:
Fc = 34.652 kN = 34652 N
R = Radius = 24.98 m
V = speed = 15.67 m/s
So,
m = 34652 × 24.98 ÷ 15.67^2
= 3525.19 kg
The velocity increased from 4 m/s to 22 m/s in 3 seconds. 18 m/s in 3 seconds so the average acceleration is change in velocity divided by time. 18 m/s divided by 3 seconds = 6 m/s^2
Answer:potential difference is more or less like voltage. Using ohms, V=IR
Where V is Voltage
I is Current =0.4A
R is Resistance=20ohms
V=0.4*20
V=8V
Hence the potential difference will be 8V.
ii) V=0.4*30
V=12V
Explanation:
The voltage of potential difference is directly proportional to the current and the resistance. So if one increase or decrease, it will have impact on the other.
From the calculations, when the resistance increase, the voltage will increase to appreciate the change.
Answer:
The acceleration of the train is 5 m/s².
Explanation:
Given:
let the initial velocity of a train = 5 m/s and
final velocity of a train = 45 m/s
time taken = 8 s
To find:
acceleration: ?
Solution:
We define acceleration as change in velocity per unit time that is the difference between the final velocity and initial velocity divided by time.

On substituting the above values we get the required acceleration

Therefore,the acceleration of the train is 5 m/s².