1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timama [110]
3 years ago
9

What is the acceleration of a 90 kg object which is acted upon by an unbalanced force of 435 N?

Physics
1 answer:
erik [133]3 years ago
8 0

Answer:

The acceleration is 4, 8 m/s2

Explanation:

We calculate the acceleration, with the data of mass and force, through the formula:

F= m x a ---> a= F/m

a= 435 N/90 kg        1N= 1 kg x m/s2

a= 435 kg x m/s2/ 90 kg

a= 4,8 m/s2

You might be interested in
Find its moment of inertia about an axis perpendicular to its plane and passing through the midpoint of the line connecting its
antoniya [11.8K]

A) Moment of inertia about an axis passing through the point where the two segments meet : $I_A=\frac{1}{12} M L^2$

B) Moment of inertia passing through the point where the midpoint of the line connects to its two ends: $I x=\frac{1}{3} M L^2$

What is Moment of inertia?

The term "moment of inertia" refers to a physical quantity that quantifies a body's resistance to having its speed of rotation along an axis changed by the application of a torque (turning force). The axis might be internal or exterior, fixed or not.

A) The moment of inertia about an axis passing through the point where the two segments meet is $I_A=\frac{1}{12} M L^2$given that the rod is bent at the center and distance from all the points to the axis remains the same, the moment of inertia about the center will remain the same.

B) Determine the moment of inertia about an axis passing through the point midpoint of the line which connects the two ends

First step: determine the distance between the ends ( d )

After applying Pythagoras theorem$\mathrm{d}=\frac{\sqrt{2}}{2} L$

Next step : determine distance between the two axis $(\mathrm{x})$

After applying Pythagoras theorem

\mathrm{x}=\frac{\sqrt{2}}{4} L$$

Final step : Calculate the value of $\mathrm{I}_{\mathrm{x}}$

applying Parallel Axis Theorem

$$I_x=I_8+M x^2$$

$$\begin{aligned}& =\frac{1}{12} M L^2+\frac{1}{4} M L^2 \\& \therefore \quad I x=\frac{1}{3} M L^2 \\&\end{aligned}$$

Hence we can conclude that Moment of inertia about an axis passing through the point where the two segments meet: $I_A=\frac{1}{12} M L^2$, Moment of inertia passing through the point where the midpoint of the line connects its two ends: $I x=\frac{1}{3} M L^2$

To learn more about moment of inertia visit:brainly.com/question/15246709

#SPJ4

5 0
1 year ago
What you filling your heart with <br>oxygen and blood
svlad2 [7]

Answer:

Explanation:

                    The right side of your heart receives oxygen-poor blood from your veins and pumps it to your lungs, where it picks up oxygen and gets rid of carbon dioxide. The left side of your heart receives oxygen-rich blood from your lungs and pumps it through your arteries to the rest of your body.

        #I AM ILLITERATE

5 0
2 years ago
Read 2 more answers
What can you tell from comparing these waves? Please help
elena-s [515]

Answer:

Explanation:

A

5 0
3 years ago
Read 2 more answers
Initially, a 2.00-kg mass is whirling at the end of a string (in a circular path of radius 0.750 m) on a horizontal frictionless
drek231 [11]

Answer:

v_f = 15 \frac{m}{s}

Explanation:

We can solve this problem using conservation of angular momentum.

The angular momentum \vec{L} is

\vec{L}  = \vec{r} \times \vec{p}

where \vec{r} is the position and \vec{p} the linear momentum.

We also know that the torque is

\vec{\tau} = \frac{d\vec{L}}{dt}  = \frac{d}{dt} ( \vec{r} \times \vec{p} )

\vec{\tau} =  \frac{d}{dt}  \vec{r} \times \vec{p} +   \vec{r} \times \frac{d}{dt} \vec{p}

\vec{\tau} =  \vec{v} \times \vec{p} +   \vec{r} \times \vec{F}

but, as the linear momentum is \vec{p} = m \vec{v} this means that is parallel to the velocity, and the first term must equal zero

\vec{v} \times \vec{p}=0

so

\vec{\tau} =   \vec{r} \times \vec{F}

But, as the only horizontal force is the tension of the string, the force must be parallel to the vector position measured from the vertical rod, so

\vec{\tau}_{rod} =   0

this means, for the angular momentum measure from the rod:

\frac{d\vec{L}_{rod}}{dt} =   0

that means :

\vec{L}_{rod} = constant

So, the magnitude of initial angular momentum is :

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| cos(\theta)

but the angle is 90°, so:

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i|

| \vec{L}_{rod_i} | = r_i * m * v_i

We know that the distance to the rod is 0.750 m, the mass 2.00 kg and the speed 5 m/s, so:

| \vec{L}_{rod_i} | = 0.750 \ m \ 2.00 \ kg \ 5 \ \frac{m}{s}

| \vec{L}_{rod_i} | = 7.5 \frac{kg m^2}{s}

For our final angular momentum we have:

| \vec{L}_{rod_f} | = r_f * m * v_f

and the radius is 0.250 m and the mass is 2.00 kg

| \vec{L}_{rod_f} | = 0.250 m * 2.00 kg * v_f

but, as the angular momentum is constant, this must be equal to the initial angular momentum

7.5 \frac{kg m^2}{s} = 0.250 m * 2.00 kg * v_f

v_f = \frac{7.5 \frac{kg m^2}{s}}{ 0.250 m * 2.00 kg}

v_f = 15 \frac{m}{s}

8 0
3 years ago
What are the strengths and limitations of the doppler and transit methods? What kind of planets are easiest to detect with each
Arturiano [62]

\huge\mathfrak\red{✔Answer:-}

Strength: able to detect planets in a wide range of orbits, as long as orbits aren't face on

Limitations: yield only planet's mass and orbital properties

3 0
3 years ago
Other questions:
  • Lori wants to send a box of oranges to a friend by mail. The box of oranges cannot exceed a mass of 10.222 Kg. If each orange ha
    14·1 answer
  • What are the two systems of measurement
    6·1 answer
  • The battery for a certain cell phone is rated at 3.70 V. According to the manufacturer it can produce math]3.15 \times 10^{4} J[
    9·1 answer
  • A friend throws a coin into a pool. you close your eyes and dive toward the spot where you saw it from the edge of the pool. whe
    5·2 answers
  • The half-wave rectifier circuit of vs(t) = 170 sin(377t) V and a load resistance R = 15Ω. Determine: a. The average load current
    5·2 answers
  • HURRRY PLEASEEEEE!!!
    11·2 answers
  • Plz help plz give u brainlist<br>state principal of pin hole camera??<br>​
    13·1 answer
  • How much does 100g grams of platinum cost
    6·1 answer
  • At a playground a student runs at a speed of 5 m/s and jump onto a circular disk of radius 3/2 m that is free to rotate around a
    9·1 answer
  • Which process generates energy in the Sun?1) nuclear fusion2) nuclear fission3) chain reaction4) transmutation
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!