Answer:
0.37sec
Explanation:
Period of oscillation of a simple pendulum of length L is:
T
=
2
π
×
√
(L
/g)
L=length of string 0.54m
g=acceleration due to gravity
T-period
T = 2 x 3.14 x √[0.54/9.8]
T = 1.47sec
An oscillating pendulum, or anything else in nature that involves "simple harmonic" (sinusoidal) motion, spends 1/4 of its period going from zero speed to maximum speed, and another 1/4 going from maximum speed to zero speed again, etc. After four quarter-periods it is back where it started.
The ball will first have V(max) at T/4,
=>V(max) = 1.47/4 = 0.37 sec
Answer:
11
Explanation:
1. You are going to be rounding down.
2. change the metric ton to kg.
1.000 * 10^3 kg = 1000 kg
1000 / 87 = 11.49 = 11 people
To locate a specific target or to determine how close submarines are to the seafloor, they use active and passive sound navigation and ranging (or a SONAR, in simple terms.) It emits pulses of sound waves that travel through the water, reflect off the target and relayed back to the ship. By determining how fast the sound wave travels back, the computers on the sub calculate how far they are from the target.
Hope this helps.
Answer:
first object final velocity =2m/s
second = 12m/s
Explanation:
i hope this will help you,..,