A wire has a diameter of 2. 0 mm and a length of 32 m and is found to have a resistance of 1. 8 ω having a resistivity of the wire
Resistivity, which is frequently denoted by the letter rho, is mathematically equal to the resistance R of a specimen, such as a wire, multiplied by its cross-sectional area A, and divided by its length l; it is represented by the symbol RA/l. The ohm is the unit of resistance.
A conductor's resistance (R) is inversely proportional to its length (L), with R L. We now know the variables that affect resistivity. Ohm's law and resistors have also been covered in relation to parallel formulae.
The resistance provided by the substance per unit length for unit cross-section is referred to as a conductor's resistivity. Temperature and pressure affect the material's resistivity, which is a property. When compared to the resistivity of insulators, conductors have a low resistivity.
To learn more about resistivity please visit -
brainly.com/question/13612460
#SPJ4
Answer: The 1st one is B. I'm pretty sure the 2nd one is A. and the 3rd one is D.
Explanation: I hope this helped, although I'm not sure for the second one
Answer:
energy is equal to 1000 J
Explanation:
When the jumper is in the tent, he has a given height, this height gives him a gravitational potential energy, which forms his initial mechanical energy of 1000 J. After jumping, this energy is converted into elastic energy of the rope plus a remainder of potential energy gravitational, it does not reach the ground, but as the friction is negligible the total mechanical energy is conserved, therefore its energy is equal to 1000 J
This is a case of energy transformation, but the total value of mechanical energy does not change
Answer:
send the wagon down a higher hill
To stop the car it would be 100m because if the car is going to 65km/h then it would still be 100km/h