Answer:
The answer to your question is 5.4 cm
Explanation:
This problem refers to calculate the change in length in one dimension due to a change in temperature.
Data
α = 12 x 10⁻⁶
Lo = 150 meters
ΔT = 30 °C
Formula
ΔL/Lo = αΔT
solve for ΔL
ΔL = αLoΔT
Substitution
ΔL = (12 x 10⁻⁶)(150)(30)
Simplification
ΔL = 0054 m = 5.4 cm
the Orbital Velocity is the velocity sufficient to cause a natural or artificial satellite to remain in orbit. Inertia of the moving body tends to make it move on in a straight line, while gravitational force tends to pull it down. The orbital path, elliptical or circular, representing a balance between gravity and inertia, and it follows a rue that states that the more massive the body at the centre of attraction is, the higher is the orbital velocity for a particular altitude or distance.
Given: Mass m = 44 Kg; Velocity v = 10 m/s
Required: Kinetic energy K.E = ?
Formula: K.E = 1/2 mv²
K.E 1/2 (44 Kg)(10 m/s)²
K.E = 2,200 Kg.m²/s²
K.E = 2,200 J Answer is A
We need to consider no change in the temperature of gas (isothermal transformation)
Volume and pressure are inversely proportional magnitudes, so we can write: