Answer:
d) 2Fr
Explanation:
We know that the work done in moving the charge from the right side to the left side in the k shell is W = ∫Fdr from r = +r to -r. F = force of attraction between nucleus and electron on k shell. F = qq'/4πε₀r² where q =charge on electron in k shell -e and q' = charge on nucleus = +e. So, F = -e × +e/4πε₀r² = -e²/4πε₀r².
We now evaluate the integral from r = +r to -r
W = ∫Fdr
= ∫(-e²/4πε₀r²)dr
= -∫e²dr/4πε₀r²
= -e²/4πε₀∫dr/r²
= -e²/4πε₀ × -[1/r] from r = +r to -r
W = e²/4πε₀[1/-r - 1/+r] = e²/4πε₀[-2/r} = -2e²/4πε₀r.
Since F = -e²/4πε₀r², Fr = = -e²/4πε₀r² × r = = -e²/4πε₀r and 2Fr = -2e²/4πε₀r.
So W = -2e²/4πε₀r = 2Fr.
So, the amount of work done to bring an electron (q = −e) from right side of hydrogen nucleus to left side in the k shell is W = 2Fr
C. electrical energy is transformed into light and heat energy
Answer:
Archimedes Principle states that "any body completely or partially submerged in water is acted upon by an upthrust force which is equal to the magnitude of Weight of the body."
Explanation:
Given parameters:
Force = 30N
Weight Susan = 45kg
Weight of Dad = 100kg
Unknown:
Acceleration of Susan = ?
Acceleration of Dad = ?
Solution:
Force = mass x acceleration
Acceleration = 
Acceleration of Susan =
= 0.67m/s²
Acceleration of Dad =
= 0.3m/s²
Learn more:
Acceleration brainly.com/question/3820012
#learnwithBrainly
E = MC^2. Albert Einstein's proven formula. When mass travels at the square of speed of light, the mass gets converted into energy