R = ρl/A
Where R = Resistance in Ohms, Ω, ρ = Resistivity in Ωm, l = Length in m.
Area in m²
ρ = Resistivity = 3.14 * 10⁻⁸ Ωm, Length l = 12m,
Area = πr² = π* (2*10⁻⁴)² m² ≈ 3.14 * (2*10⁻⁴)² m²
R = ρl/A
≈ 3.14 * 10⁻⁸ * 12 / (3.14 * (2*10⁻⁴)²)
≈ 3
Resistance, R ≈ 3 Ω
Answer:
The wood's potential energy on the carpenter's shoulder is 150 J.
Explanation:
Given;
mass of the wood, m = 10 kg
height through which the wood was raised, h = 1.5 m
acceleration due to gravity, g = 10 m/s²
The wood's potential energy on the carpenter's shoulder is calculated as;
P.E = mgh
P.E = 10 x 10 x 1.5
P.E = 150 J
Therefore, the wood's potential energy on the carpenter's shoulder is 150 J.
Answer: Heat transfers through brick walls and glass through conduction. In conduction heat is transferred by vibration of molecules. most energetic molecules vibrate and pass on the energy to less energetic molecules. Then they vibrate and further pass on the energy. In this way heat is transferred out of the home. Heat also transfers through the leakage of warm air from doors and windows. This occurs through convection. In convection energy is transferred through bulk movement of liquid and air molecules. Heat also transfers from insulation. in insulation there is no material in between the layers. So heat transfer through insulation occurs through radiations that occurs by X-Rays, Ultravoilet rays etc.
Substract two consecutive terms of the sequence to see if there is a common difference:

As we can see, there is a common difference of -6.
Then, if a number of the sequence is given, the next one can be found by adding -6 (which is the same as subtracting 6).
Notice that the first term of the sequence is 3.
Then, the rule for the sequence is to start with 3 and add -6 repeatedly.
Therefore, the correct choice is option A) Start with 3 and add -6 repeatedly.