Answer:
1.4 m/s
Explanation:
From the question given above, we obtained the following data:
Initial Displacement (d1) = 0.9 m
Final Displacement (d2) = 1.6 m
Initial time (t1) = 1.5 secs
Final time (t2) = 2 secs
Velocity (v) =..?
The velocity of an object can be defined as the rate of change of the displacement of the object with time. Mathematically, it can be expressed as follow:
Velocity = change of displacement /time
v = Δd / Δt
Thus, with the above formula, we can obtain the velocity of the car as follow:
Initial Displacement (d1) = 0.9 m
Final Displacement (d2) = 1.6 m
Change in displacement (Δd) = d2 – d1 = 1.6 – 0.9
= 0.7 m
Initial time (t1) = 1.5 secs
Final time (t2) = 2 secs
Change in time (Δt) = t2 – t1
= 2 – 1.5
= 0.5 s
Velocity (v) =..?
v = Δd / Δt
v = 0.7/0.5
v = 1.4 m/s
Therefore, the velocity of the car is 1.4 m/s
Answer:
The rock's speed after 5 seconds is 98 m/s.
Explanation:
A rock is dropped off a cliff.
It had an initial velocity of 0 m/s. And now it is moving downwards under the influence of gravitational force with the gravitational acceleration of 9.8 m/s².
Speed after 5 seconds = V
We know that acceleration = average speed/time
In our case,
g = ((0+V)/2)/5
9.8*5 = V/2
=> V = 2*9.8*5
V = 98 m/s
<span>To find the acceleration we are given two facts to begin. The impact at 16 km/h and the dent of 6.4 cm, or 0.064 meters. In solving the problem uniform acceleration is assumed, which would mean the avg speed during the impact was 8 km/hr by taking 16/2. We know distance = rate*time (d=r*t) . So t = d / r, so 0.64/8 = 0.008hr for t. Now we can solve for acceleration by taking a = 16 / 0.008 = 2000 km/hr.</span>