1)

Answer:
d. 12.25J
------------------------
2)
According to the conservation of energy:

Answer:
b. 12.25
-------------------------------
3)

Answer:
d. 0 kg∙m/s
-----------------------------------------
4)
Using conservation of momentum:

Answer:
b. 0 kg•m/s
Answer:
3.085 [m].
Explanation:
1) The rule:
m₁*g*l₁=m₂*g*l₂, where m₁ and l₁ - the mass and distance for the small child, m₂ and l₂ - for the big child;
2) according to the condigion l₁+l₂=5, then
3) it is possible to make up the system:

4) finally, l₁=145/47≈3.085 [m].
Answer:
As the planets are very small and dark in comparison with stars, it makes them very hard to be found from earth.
Explanation:
Astronomy, of course, has a solution for this. As astronomers can't observe planets directly, they decided to observe the stars and search for the effects that planets have on them.
There are many ways of observing the exoplanets: Radial Velocity, Transit Photometry, Microlensing, Astrometry, Direct Imaging, etc.
Before all of this, scientist had to find ways to prove their theories. Most of their time they have spent in giving the creative answers.
Science and creativity are very much connected when we speak about the development of science. Rationality and creativity always go together.
In order to create an idea that other people will consider useful, it is important to use creativity. As no one has the exact answer when it comes to science, the adventure is to research the unknown.
Answer: 655.7 nm
Explanation:
Given
The slits are separated by 
Distance between slits and screen is 
Adjacent bright fringes are
apart
Also, the distance between bright fringes is given by
![\Rightarrow \beta =\dfrac{\lambda D}{d}\quad [\lambda=\text{Wavelength of light}]\\\\\text{Insert the values}\\\\\Rightarrow 2.88\times 10^{-3}=\dfrac{\lambda \cdot 2.24}{0.510\times 10^{-3}}\\\\\Rightarrow \lambda =\dfrac{2.88\times 10^{-3}\times 0.510\times 10^{-3}}{2.24}\\\\\Rightarrow \lambda =0.6557\times 10^{-6}\ m\\\Rightarrow \lambda =655.7\ nm](https://tex.z-dn.net/?f=%5CRightarrow%20%5Cbeta%20%3D%5Cdfrac%7B%5Clambda%20D%7D%7Bd%7D%5Cquad%20%5B%5Clambda%3D%5Ctext%7BWavelength%20of%20light%7D%5D%5C%5C%5C%5C%5Ctext%7BInsert%20the%20values%7D%5C%5C%5C%5C%5CRightarrow%202.88%5Ctimes%2010%5E%7B-3%7D%3D%5Cdfrac%7B%5Clambda%20%5Ccdot%202.24%7D%7B0.510%5Ctimes%2010%5E%7B-3%7D%7D%5C%5C%5C%5C%5CRightarrow%20%5Clambda%20%3D%5Cdfrac%7B2.88%5Ctimes%2010%5E%7B-3%7D%5Ctimes%200.510%5Ctimes%2010%5E%7B-3%7D%7D%7B2.24%7D%5C%5C%5C%5C%5CRightarrow%20%5Clambda%20%3D0.6557%5Ctimes%2010%5E%7B-6%7D%5C%20m%5C%5C%5CRightarrow%20%5Clambda%20%3D655.7%5C%20nm)