Not sure if you mean to ask for the first order partial derivatives, one wrt x and the other wrt y, or the second order partial derivative, first wrt x then wrt y. I'll assume the former.


Or, if you actually did want the second order derivative,
![\dfrac{\partial^2}{\partial y\partial x}(2x+3y)^{10}=\dfrac\partial{\partial y}\left[20(2x+3y)^9\right]=180(2x+3y)^8\times3=540(2x+3y)^8](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%5E2%7D%7B%5Cpartial%20y%5Cpartial%20x%7D%282x%2B3y%29%5E%7B10%7D%3D%5Cdfrac%5Cpartial%7B%5Cpartial%20y%7D%5Cleft%5B20%282x%2B3y%29%5E9%5Cright%5D%3D180%282x%2B3y%29%5E8%5Ctimes3%3D540%282x%2B3y%29%5E8)
and in case you meant the other way around, no need to compute that, as

by Schwarz' theorem (the partial derivatives are guaranteed to be continuous because

is a polynomial).
Answer:
Hey there!
The solution of -14.5<x, shows that x is greater than and not equal to -14.5.
The third graph from the top shows this.
Hope this helps :)
Answer:
I could be wrong, but I believe that the answer is D, none. This is because there is only proof of one congruent side and angle.
Step-by-step explanation:
<u>Answer-</u>
2 is the upper limit for the zeros.
<u>Solution-</u>
The given function f(x) is,

For calculating the zeros,










From all the 4 roots, it can be obtained that 2 is the greatest zero.