crosses x-axis at (2, 0 ) and y-axis at (0, - 4 )
To find where the graph crosses the x and y axes ( intercepts )
• let x = 0, in the equation for y- intercept
• let y = 0, in the equation for x- intercept
x = 0 : y = 0 - 4 = - 4 ⇒ (0, - 4 )
y = 0 : 2x - 4 = 0 ⇒ 2x = 4 ⇒ x = 2 ⇒ (2, 0 )
Answer:
120
Step-by-step explanation:
I'm assuming your looking for the area (if not pls tell me and I will make corrections)
So to get the area of a 3D shape you multiply the length, width, and height
5×4×6=120
Answer:
The correct answer is option C.
The mid point of the line segment.
Step-by-step explanation:
the perpendicular line segment construction twice using paper folding
we have to find the mid point of the given line segment.
We get the midpoint easily when fold the paper correctly
Therefore the correct answer is option C.
The mid point of the line segment.


- <u>A </u><u>triangle </u><u>with </u><u>sides </u><u>11m</u><u>, </u><u> </u><u>13m </u><u>and </u><u>18m</u>

- <u>We</u><u> </u><u>have </u><u>to </u><u>check </u><u>it </u><u>whether </u><u>it </u><u>is </u><u>right </u><u>angled </u><u>triangle </u><u>or </u><u>not</u><u>? </u>


According to the Pythagoras theorem, The sum of the squares of perpendicular height and the square of the base of the triangle is equal to the square of hypotenuse that is sum of the squares of two small sides equal to the square of longest side of the triangle.
<u>We </u><u>imply</u><u> </u><u>it </u><u>in </u><u>the </u><u>given </u><u>triangle </u><u>,</u>





<u>From </u><u>Above </u><u>we </u><u>can </u><u>conclude </u><u>that</u><u>, </u>
The sum of the squares of two small sides that is perpendicular height and base is not equal to the square of longest side that is Hypotenuse

Answer:
Solve the inequality k + 6 ≤ 21;
(A)k ≥ 27
<u>(B)k ≤ 15 </u>
(C)k ≥ 15
(D)k ≤ 27
Step-by-step explanation:
