Answer/Step-by-step explanation:
Change the 3rd and 4th input. ALL the input values must be different even if they have the same output values in order to be a function. NONE of the input values should be the same, it just has to be something completely different for it to be correct. It may not be linear, but It will be correct.
Answer: x=1
They all have 1 for their x coordinate; 'nuff said.
Answer:
sorry I can't help you. ...............
Step-by-step explanation:
Answer:
A non-equilateral rhombus.
Step-by-step explanation:
We can solve this graphically.
We start with square:
ABCD
with:
A = (11, - 7)
B = (9, - 4)
C = (11, - 1)
D = (13, - 4)
Only with the vertices, we can see that ABCD is equilateral, as the length of each side is:
AB = √( (11 - 9)^2 + (-7 -(-4))^2) = √( (2)^2 + (3)^2) = √(4 + 9) = √13
BC = √( (11 - 9)^2 + (-1 -(-4))^2) = √13
CD = √( (11 - 13)^2 + (-1 -(-4))^2) = √13
DA = √( (11 - 13)^2 + (-7 -(-4))^2) = √13
And we change C by C' = (11, 1)
In the image you can see the 5 points and the figure that they make:
The figure ABCD is a rhombus, and ABC'D is also a rhombus, the only difference between the figures is that ABCD is equilateral while ABC'D is not equilateral.
Answer:

Step-by-step explanation:
First, let's change those variables to x and y, just for the sake of convenience. In order to find the inverse of a function algebraically, switch the x and y coordinates, then solve for the new y. Letting y = A(n) and x = n (we will switch them back when we're done):
y = 3x - 20. This is linear; a line with a slope of 3 and a y-intercept of -20. When we switch the x and the y, we get:
x = 3y - 20. Now we solve for the new y. Begin by adding 20 to both sides:
x + 20 = 3y. Now divide both sides by 3:
, or to write it in slope-intercept form, like the function you started with:

This is also a line, with a slope of 1/3 and a y-intercept of +20/3
Now, replacing:

That is how to write the inverse using function notation. The little -1 as an exponent tells us that this is the inverse of the function A(n).