1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa [10]
3 years ago
6

how much kinetic energy is produced when an object having mass of 50gm throwing with velocity 80m/s?​

Physics
2 answers:
kirill115 [55]3 years ago
7 0

Answer:

mass = 50 gm

= 0.05 kg

velocity = 80 m / s

K.E = 1/2 mv^2

= 1/2 × 0.05 × 80^2

=160 j

Jlenok [28]3 years ago
4 0

Answer:

KE = 160 J

Explanation:

KE = 1/2mv²

mass= 50gm = 0.05kg

velocity = 80

KE = 1/2 x 0.05 x 80²

= 1/2 x 0.05 x 6400

= 160

You might be interested in
A man jogs at a speed of 1.6 m/s. His dog waits 1.8 s and then takes off running at a speed of 3 m/s to catch the man. How far w
inessss [21]

Answer:

The dog catches up with the man 6.1714m later.

Explanation:

The first thing to take into account is the speed formula. It is v=\frac{d}{t}, where v is speed, d is distance and t is time. From this formula, we can get the distance formula by finding d, it is d=v\cdot t

Now, the distance equation for the man would be:

d_{man}=v_{man}\cdot t=1.6\cdot t

The distance equation for the dog would be obtained by the same way with just a little detail. The dog takes off running 1.8s after the man did. So, in the equation we must subtract 1.8 from t.

d_{dog}=v_{dog}\cdot (t-1.8)=3\cdot (t-1.8)

For a better understanding, at t=1.8 the dog must be in d=0. Let's verify:

d_{dog}=v_{dog}\cdot (1.8-1.8)=3\cdot (0)=0

Now, for finding how far they have each traveled when the dog catches up with the man we must match the equations of each one.

d_{man}=d_{dog}

1.6\cdot t=3\cdot (t-1.8)

1.6\cdot t=3\cdot t-5.4

1.4\cdot t=5.4

t=\frac{5.4}{1.4}

t=3.8571s

The result obtained previously means that the dog catches up with the man 3.8571s after the man started running.

That value is used in the man's distance equation.

d_{man}=1.6\cdot t=1.6\cdot (3.8571)

d_{man}=6.1714m

Finally, the dog catches up with the man 6.1714m later.

6 0
3 years ago
Help me people( ◜‿◝ )♡​
almond37 [142]

Answer:

4

Explanation:

the temperature at and above which vapor of the substance cannot be liquefied, no matter how much pressure is applied.

6 0
3 years ago
Read 2 more answers
two boxes sit on a frictionless surface and are in contact with one another. the first box has a mass of 7 kg and the second box
egoroff_w [7]
The acceleration of the boxes depends on the mass and weight. 

we have a mass of 7 and 8 kilograms

if it took 25 N force to move box A, then you would take 25 and multiply by 8 then divide by 2. 

It will leave you with 100 N. 

finally take the sq rt of 100 to get 10
7 0
3 years ago
Convert 2 kg to cg give you answer in SI
BARSIC [14]

1 kg=100000 cg

2 kg=200000 cq

If mass is the quantity then kg is the S.I

2 kg=2kg

6 0
3 years ago
A police car is traveling north on a straight road at a constant 16.0 m/s. An SUV traveling north at 30.0 m/s passes the police
Nastasia [14]

Answer:

It will take 15.55s for the police car to pass the SUV

Explanation:

We first have to establish that both the police car and the SUV will travel the same distance in the same amount of time. The police car is moving at constant velocity and the SUV is experiencing a deceleration. Thus we will use two distance fromulas (for constant and accelerated motions) with the same variable for t and x:

1. x=x_{0}+vt

2. x=x_{0}+v_{0}t+\frac{at^{2}}{2}

Since both cars will travel the same distance x, we can equal both formulas and solve for t:

vt = v_{0}t+\frac{at^2}{2}\\\\   16\frac{m}{s}t =30\frac{m}{s}t-\frac{1.8\frac{m}{s^{2}} t^{2}}{2}

We simplify the fraction present and rearrange for our formula so that it equals 0:

0.9\frac{m}{s^{2}} t^{2}-14\frac{m}{s}t=0 \\\\ t(0.9\frac{m}{s^{2}}t-14\frac{m}{s})=0

In the very last step we factored a common factor t. There is two possible solutions to the equation at t=0 and:

0.9\frac{m}{s^{2}}t-14\frac{m}{s}=0 \\\\  0.9\frac{m}{s^{2}}t =14\frac{m}{s} \\\\ t =\frac{14\frac{m}{s}}{0.9\frac{m}{s^{2}}}=15.56s

What this means is that during the displacement of the police car and SUV, there will be two moments in time where they will be next to each other; at t=0 s (when the SUV passed the police car) and t=15.56s(when the police car catches up to the SUV)

8 0
3 years ago
Other questions:
  • On a good night, the front row of the Twisted Sister concert would surely result in a 120 dB sound level. An IPod produces 100 d
    6·1 answer
  • The wave speed in a guitar string of length 57.5 cm is 266 m/s. you pluck the center of the string by pulling it up and letting
    14·1 answer
  • Identify the following as a suspension or a colloid. sand in water
    13·2 answers
  • Work out the following a) Find β = v/c for a person walking at 3 mile/hr and a truck moving at 65 mile/hr. (b) Find γ-1, where γ
    9·1 answer
  • Matt forgot to put the fabric softener in the wash. As his socks tumbled in the dryer, they became charged. If a small piece of
    10·1 answer
  • Can fatigue seriously impair driving ability
    10·2 answers
  • If a 2 kg ball is moving at 6 m/s to the right and then hits a wall and bounces back at - 4 m/s (left), what is the change in mo
    12·1 answer
  • A force Fof 40000 lbf is applied to rod AC the negative Y-direction. The rod is 1000 inches tall. A Force P of 25 lbf is applied
    11·1 answer
  • Explain the reason for following in science. A small stone trapped in your shoe, under your foot, can be very painful.
    10·1 answer
  • A galaxy with a lot of dark matter would have a high mass-to-light ratio compared to the Sun. True False
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!