Answer:
The dog catches up with the man 6.1714m later.
Explanation:
The first thing to take into account is the speed formula. It is
, where v is speed, d is distance and t is time. From this formula, we can get the distance formula by finding d, it is 
Now, the distance equation for the man would be:

The distance equation for the dog would be obtained by the same way with just a little detail. The dog takes off running 1.8s after the man did. So, in the equation we must subtract 1.8 from t.

For a better understanding, at t=1.8 the dog must be in d=0. Let's verify:

Now, for finding how far they have each traveled when the dog catches up with the man we must match the equations of each one.






The result obtained previously means that the dog catches up with the man 3.8571s after the man started running.
That value is used in the man's distance equation.


Finally, the dog catches up with the man 6.1714m later.
Answer:
4
Explanation:
the temperature at and above which vapor of the substance cannot be liquefied, no matter how much pressure is applied.
The acceleration of the boxes depends on the mass and weight.
we have a mass of 7 and 8 kilograms
if it took 25 N force to move box A, then you would take 25 and multiply by 8 then divide by 2.
It will leave you with 100 N.
finally take the sq rt of 100 to get 10
1 kg=100000 cg
2 kg=200000 cq
If mass is the quantity then kg is the S.I
2 kg=2kg
Answer:
It will take 15.55s for the police car to pass the SUV
Explanation:
We first have to establish that both the police car and the SUV will travel the same distance in the same amount of time. The police car is moving at constant velocity and the SUV is experiencing a deceleration. Thus we will use two distance fromulas (for constant and accelerated motions) with the same variable for t and x:
1. 
2. 
Since both cars will travel the same distance x, we can equal both formulas and solve for t:

We simplify the fraction present and rearrange for our formula so that it equals 0:

In the very last step we factored a common factor t. There is two possible solutions to the equation at
and:

What this means is that during the displacement of the police car and SUV, there will be two moments in time where they will be next to each other; at
(when the SUV passed the police car) and
(when the police car catches up to the SUV)