Answer:
D.
Explanation:
Cause the weather made those rocks. Like volcanos and weather.
They are the outer layer of the electron layers.
Answer:
1.
643.21g 1 mol 6.022^23
262.87 g 1 mol
= 1.4735E24 [Mg3(PO4)2]
2.
4.061x10^24 1mol 22.4 (L)
6.022^23 1mol
= 151 liters H2O2
3.
479.3g 1 mol 6.022^23
18.02g 1mol
= 1.60E25 H20 atoms
4.
80.34L 1mol 164.1
22.4L 1mol
588.6g Ca(NO3)2
5.
893.7g 1mol 22.4
44.01g 1mol
= 427 L CO2 or 427.4
6.
5.39 x 10^25 1mol 78.01
6.022^23 1mol
= 6980g Al(OH)3
hope this helps!! :)
Answer:
An orbital is a region in space where there is a high probability of finding an electron.
Explanation:
The orbital is a concept that developed in quantum mechanics. Recall that Neils Bohr postulated that the electron occupied stationary states which he called energy levels. Electrons emit radiation when the move from a higher to a lower energy level. Similarly, energy is absorbed by an electron to move from a lower to a higher orbit.
This idea was upturned by the Heisenberg uncertainty principle. This principle state that the momentum and position of a particle can not be simultaneously measured with precision.
Instead of defining a 'fixed position' for the electron, we define a region in space where there is a possibility of finding an electron with a certain amount of energy. This orbital is identified by a set of quantum numbers.
Answer:
See the explanation
Explanation:
In this case, we have to keep in mind that in the monosubstituted product we only have to replace 1 hydrogen with another group. In this case, we are going to use the methyl group
.
In the axial position, we have a more steric hindrance because we have two hydrogens near to the
group. If we have <u>more steric hindrance</u> the molecule would be <u>more unstable</u>. In the equatorial positions, we don't <u>any interactions</u> because the
group is pointing out. If we don't have <u>any steric hindrance</u> the molecule will be <u>more stable</u>, that's why the molecule will <u>the equatorial position.</u>
See figure 1
I hope it helps!