Answer:

Explanation:
As we know that the orbital speed is given as

here we know that
v = 5500 m/s


now we have


now acceleration due to gravity of planet is given as



now range of the projectile on the surface of planet is given as



m= 60g = 60/1000 Kg = 0.06 Kg
v = 2cm3 = 2 * (0.01^3) m3 = 2 *10^-6 m3
Density= m/v = 6 * 10^-2 / 2 *10^-6 = 3 *10^4 Kg/m3
in case you dont want to read the answer is B
Answer: 0.4 m
Explanation:
Given
Speed of ambulance, vs = 61.9 m/s
Speed of car = 28.5 m/s
Frequency of ambulance siren, f = 694 Hz
Velocity of sound in air, v = 343 m/s
With speed of ambulance being (61.9 m/s) -> We solve using
fd = f(v + vr) / (v - vs), where vr = 0
fd = 694 * (343 + 0) / (343 - 61.9)
fd = 694 * (343 / 281.1)
fd = 694 * 1.22
fd = 847 Hz
Recall,
λ = v/f
λ = 343/847
λ = 0.4 m
Therefore, the wavelength of the sound of the ambulance’s siren if you are standing at the position of the car is 0.4 m
Answer: The correct answer is (C).
Explanation:
Supply function:
Demand function:

S(p)=D(p), price for which supply is equal to demand:

After solving this above equation graphically, we will get the values of p.
1) p =96.236
2) p=( -118.258)
We will reject the negative value of p.
So, the value of p that price for which the supply equals the demand is $ 96.236
$96.24. Hence, the correct answer is option (C).