Using lens equation;
1/o + 1/i = 1/f; where o = Object distance, i = image distance (normally negative), f = focal length (normally negative)
Substituting;
1/o + 1/-30 = 1/-43 => 1/o = -1/43 + 1/30 = 0.01 => o = 1/0.01 = 99.23 cm
Therefore, the object should be place 99.23 cm from the lens.
Answer:
Kinetic friction is lesser than limiting friction. Two surfaces are rubbed together, first with a smaller force and then with a greater force.
the object distance of both lenses are positive.
Answer:
60 000 N
Explanation:
1 pa = 1 N/m^2
you have 300 000 of these = 300 000 N /m^2
but only an area of .2 m^2
300 000 N / m^2 * .2 m^2 = 60 000 N
Answer:
40 N/m
Explanation:
F = -kx (This is the Hooke's Law equation)
F is the force the spring exerts = 8 N
-k = spring constant
x = displacement (The distance stretched past it's natural length) = 20cm
x needs to be in meters, and 20 cm is = to 0.2 meters
Finally:
8N = -k (0.2m)
-k = 8N / 0.2 m
k = -40 N/m