Answer:
Force exerted, F = 2.64 × 10⁷ Newton
Explanation:
It is given that,
Mass of the artillery shell, m = 1100 kg
It is accelerated at, 
We need to find the magnitude of force exerted on the ship by the artillery shell. It can be determined using Newton's second law of motion :
F = ma

F = 26400000 Newton
or
F = 2.64 × 10⁷ Newton
So, the force exerted on the ship by the artillery shell is 2.64 × 10⁷ Newton.
Here is your answer:
First find the notations:
5.0×10^2=500.
1.0×10^3=1,000
Then you multiply:
1,000×500=500,000
Your answer is...
=500,000 or 5.0×10^4
In Longitudinal waves, particles of the medium vibrate around their mean positions. Their amplitude of vibration is in the direction of the propagation of the wave. In transverse wave of longitudinal wave, <em>the wavelength is always the distance between two particles which are in the same phase.</em>
If we take pressure waves, (sound waves), we have pressure variations created by sound wave along its path. Pressure is maximum at compression regions and pressure is minimum at rarefaction region. In between the two, pressure of air remains as the pressure when there is no wave.
<em>The wave length is then the distance between two consecutive rarefactions or two consecutive compression regions.</em>
<em>It is also the distance traveled by the wave in one time period.</em> Time period is the time the particles in the medium take to vibrate towards the end, turn back to reach the other end of their oscillation and then reach back their position.
Yeah oppp because this is yes
We have that the speed of the object between 60 to 70 seconds

From the question we are told
The speed of the object between 60 to 70 seconds
Generally the equation for Average speed is mathematically given as

Where

Therefore

In conclusion
The speed of the object between 60 to 70 seconds

For more information on this visit
brainly.com/question/23379286?referrer=searchResults