Answer:
The light used has a wavelenght of 4.51×10^-7 m.
Explanation:
let:
n be the order fringe
Ф be the angle that the light makes
d is the slit spacing of the grating
λ be the wavelength of the light
then, by Bragg's law:
n×λ = d×sin(Ф)
λ = d×sin(Ф)/n
λ = (3.2×10^-4 cm)×sin(25.0°)/3
= 4.51×10^-5 cm
≈ 4.51×10^-7 m
Therefore, the light used has a wavelenght of 4.51×10^-7 m.
Answer:
When an electron is hit by a photon of light, it absorbs the quanta of energy the photon was carrying and moves to a higher energy state. One way of thinking about this higher energy state is to imagine that the electron is now moving faster, (it has just been "hit" by a rapidly moving photon)
A photon is a quantum of EM radiation. Its energy is given by E = hf and is related to the frequency f and wavelength λ of the radiation by. E=hf=hcλ(energy of a photon) E = h f = h c λ (energy of a photon) , where E is the energy of a single photon and c is the speed of light.
As we use the Kinetic energy and the equation is 1/2mv^2, changing its mass will change its speed and its energy. So more mass, more speed more energy. also the gravitational potential energy; mass x gravity x height; more mass and more height more speed as it go down to the slope! Hope it helps!
You use acceleration due to gravity
and 1/2 atsqr=d
therefore 1/2 * 9.8 * tsqr= d
Scattering occurs when light changes direction after colliding with particles of matter.