Answer:0.0704 kg
Explanation:
Given
initial Absolute pressure
=210+101.325=311.325



as the volume remains constant therefore



therefore Gauge pressure is 337.44-101.325=236.117 KPa
Initial mass 

Final mass 

Therefore
=0.91-0.839=0.0704 kg of air needs to be removed to get initial pressure back
Explanation:
In total, the length is measured from the tip of the bow in a linear fashion to the stern of the formation of delight including any back-deck extensions. The measurement involves bow sprits; rudders; detachable engines and engine sections; handles; and various fittings and connections.
Importance in calculating a boat's length:
it affects the transportation costs (the longer the length, the higher the cost).
The pontoon's length counts as you find out how much rope you need to wrestle.
The cost of vessel settlement on marinas depends in part on the pontoon length. As more area is consumed by a more drawn pontoon, the docking charges are higher.
Transportation guidelines will probably not allow pontoons past a specific length on specific occasions of the day.
The train would need the greatest amount of force due to weight! If you think of it, a baseball won't need much force to stop it, but if you have a heavy train, it will need excessive force to stop the train. The answer would be #3
I hope this answer helps!
Sorry if it doesn't make sense, as I don't know that much about physics! I am just thinking of what makes sense.
Potential energy due to gravity = Ep = mgh [symbols have their usual meaning ]
Evidently, HALVING the mass will make Ep , HALF its previous value. So, It will be halved.
Answer:
The minimum wall thickness Tmin required for the spherical tank is 65.90mm
Explanation:
Solution
Recall that,
Tmin = The minimum wall thickness =PD/2бp
where D = diameter of 8.0 m
Internal pressure = 1.62 MPa
Then
The yield strength = 295MPa/3.0 = 98.33
thus,
PD/2бp = 1.62 * 8000/ 2 *98.33
= 12960/196.66 = 65.90
Therefore the wall thickness Tmin required for the spherical tank is 65.90mm