Answer:
Explanation:
Time to cover first 100 km = 1 hour.
time remaining = 3.15 - 1 = 2.15 hour .
Time to cover next 42 km = 1 hour .
Time remaining = 2.15-1 = 1.15 hour.
Distance to be covered = 310 - 142
= 168 km
least speed needed = distance remaining / time remaining
= 168 / 1.15
= 146.08 km / h .
Answer:
a) If we apply pressure to a fluid in a sealed container, the pressure will be felt undiminished at every point in the fluid and on the walls of the container.
Explanation:
Pascal´s Principle can be applied in the hydraulic press:
If we apply a small force (F1) on a small area piston A1, then, a pressure (P) is generated that is transmitted equally to all the particles of the liquid until it reaches a larger area piston and therefore a force (F2) can be exerted that is proportional to the area(A2) of the piston.
P=F/A
P1=P2
F1/ A1= F2/ A2
F2= F1* A2/ A1
The pressure acting on one side is transmitted to all the molecules of the liquid because the liquid is incompressible.
In an incompressible liquid, the volume and amount of mass does not vary when pressure is applied.
Explanation:
LD₁ = 10⁵ mm⁻²
LD₂ = 10⁴mm⁻²
V = 1000 mm³
Distance = (LD)(V)
Distance₁ = (10⁵mm⁻²)(1000mm³) = 10×10⁷mm = 10×10⁴m
Distance₂ = (10⁹mm⁻²)(1000mm³) = 1×10¹² mm = 1×10⁹ m
Conversion to miles:
Distance₁ = 10×10⁴ m / 1609m = 62 miles
Distance₂ = 10×10⁹m / 1609 m = 621,504 miles.
<h2>
Option A is the correct answer.</h2>
Explanation:
A 10-ω resistor and a 30-ω resistor are connected in series across a 100-V battery
Total resistance = 10 + 30 = 40 ω
We have
Voltage = Current x resistance
100 = I x 40
I = 2.5 A
In series current in all the resistors are same, that is 2.5 A
Voltage in 10ω resistor, V = I x 10 = 2.5 x 10 = 25 V
In parallel connection potential in all the resistors are same.
Voltage in 10ω resistor, V = 100 V
The ratio of the potential difference across the 10-ω resistor in the series combination to that of the 10-ω resistance connected in parallel = 25/100 = 1/4
Option A is the correct answer.