Answer:
One might think of a plucked guitar string - the sound would depend on the original amplitude of the disturbance -
Speed and velocity would still be the same
(b) is correct because the energy transfer depends on the original energy applied.
Answer:
D The temperature, pressure and volume will all increase
M=meter, km=kilometer, mm=millimeter, mg=micrometer, cm=centimeter
Answer:
U = 25 J
Explanation:
The energy in a set of charges is given by
U = 
in this case we have three charges of equal magnitude
q = q₁ = q₂ = q₃
with the configuration of an equilateral triangle all distances are worth
d = a
U = k (
)
we substitute
15 = k q² (3 / a)
k q² /a = 5
For the second configuration a load is moved to the measured point of the other two
d₁₃ = a
The distance to charge 2 that is at the midpoint of the other two is
d₁₂ = d₂₃ = a / 2
U = k (\frac{q_1q_2}{ r_1_2 } + \frac{q_1q_3}{r_1_3} + \frac{q_2q_3}{r_2_3})
U = k q² (
)
U = (kq² /a) 5
substituting
U = 5 5
U = 25 J
Answer:
Point A is at higher potential than point B
Explanation:
Electrons are negatively charged - this means that they are attracted by positive charges and repelled by negative charges.
This also means that they tend to move in a direction opposite to the electric field lines (because electric field lines point away from a positive charge and toward a negative charge). So, they also tend to move from a point at lower potential to a point at higher potential.
In this problem, the electrons flow from point B to point A: therefore, point A must have higher potential than point B.