Answer:
Step-by-step explanation:
The empirical rule, also known as three-sigma rule or 68-95-99.7 rule, "is a statistical rule which states that for a normal distribution, almost all data falls within three standard deviations (denoted by σ) of the mean (denoted by µ)".
Let X the random variable who represent the lifespans of tigers in a particular zoo.
From the problem we have the mean and the standard deviation for the random variable X.
On this case in order to check if the random variable X follows a normal distribution we can use the empirical rule that states the following:
• The probability of obtain values within one deviation from the mean is 0.68
• The probability of obtain values within two deviation's from the mean is 0.95
• The probability of obtain values within three deviation's from the mean is 0.997
We want to find this probability:
And in order to calculate how many deviation we are above/below the mean we can use the z score given by:
And if we use this formula for the two values given we have:
So we have values between 2 and 3 deviations above the mean.
We can use the following probabilities
And we can find this probability on this way: