Answer:
-24 m/s
Explanation:
mass of the bowling ball = 3 kg
time (t) = 0.3 seconds
Force = 24 N
initial velocity u = ???
We know that;
Force = mass × acceleration (a)
So;
24 = 3 × a
a = 24/3
a = 8 m/s²
Also;
From equation of motion; acceleration is given by the relation;

if v = 0
then ;

24 = 0- u
u = -24 m/s
Thus; the initial velocity of the bowling ball when it first touched the mattress = -24 m/s
Heat transfer is limited to conduction and radiation only in anomalous expansion of water simply because of the temperature at which the expansion occurs and density
<h3>What is anomalous expansion of water?</h3>
Anomalous expansion of water is a property of water in which water expands instead of contracting.
- Anomalous expansion of water makes water less dense.
- The major effect of this anomalous expansion it will still remain less dense and at the surface of water.
- Interestingly, this expansion occurs when it is cooled from 4°C to 0°C.
Learn more about properties of water:
brainly.com/question/18681949
<em>Energy</em><em> </em><em>can</em><em> </em><em>neither </em><em>be</em><em> </em><em>created </em><em>nor</em><em> </em><em>be</em><em> </em><em>destroyed</em><em> </em><em>but</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>converted</em><em> </em><em>from</em><em> </em><em>one</em><em> </em><em>form</em><em> </em><em>to</em><em> </em><em>another </em><em>.</em>
Hello! :)
C) heat from the sun
Why?
Because the sun’s heat makes the water turn to steam—or what we call “water vapor.”
Hope this helped and I hope I answered in time!
Good luck!
~ Destiny ^_^
Answer:
body position 4 is (-1,133, -1.83)
Explanation:
The concept of center of gravity is of great importance since in this all external forces are considered applied, it is defined by
x_cm = 1 /M ∑
m_{i}
y_cm = 1 /M ∑ y_{i} mi
Where M is the total mass of the body, mi is the mass of each element
give us the mass and position of this masses
body 1
m1 = 2.00 ka
x1 = 0 me
y1 = 0 me
body 2
m2 = 2.20 kg
x2 = 0m
y2 = 5 m
body 3
m3 = 3.4 kg
x3 = 2.00 m
y3 = 0
body 4
m4 = 6 kg
x4=?
y4=?
mass center position
x_cm = 0
y_cm = 0
let's apply to the equations of the initial part
X axis
M = 2.00 + 2.20 + 3.40
M = 7.6 kg
0 = 1 / 7.6 (2 0 + 2.2 0 + 3.4 2 + 6 x4)
x4 = -6.8 / 6
x4 = -1,133 m
Axis y
0 = 1 / 7.6 (2 0 + 2.20 5 +3.4 0 + 6 y4)
y4 = -11/6
y4 = -1.83 m
body position 4 is (-1,133, -1.83)