1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AURORKA [14]
3 years ago
7

Can someone plz help me :'(

Physics
2 answers:
RUDIKE [14]3 years ago
7 0
1.) equilibrium - middle ground in a wave.
2.) amplitude - how tall a wave is.
3.) wavelength - distance between crests.
4.) trough - lowest point on a wave.
5.) crest - highest point on a wave.
morpeh [17]3 years ago
5 0
1 is amplitude crest is 5 3 is wavelength. Your chart is confusing so that’s all I got
You might be interested in
1. An object with a mass of m is thrown straight up near the surface of the earth. While the object is going up, the net force o
Vaselesa [24]

Answer:

C: equal to mg

Explanation:

in free-fall, gravity is always the net force on an object

5 0
3 years ago
A 2 column by 3 row table. Column 1 is titled Planet A with the following entries: Atmosphere is mostly carbon dioxide, Surface
Eddi Din [679]

Answer: earth

Explanation: isn’t earth the only plant with LIQUID water?

4 0
3 years ago
A 75.0kg bicyclist (including the bicycle) is pedaling to the right, causing her speed to increase at a rate of 2.20m/s^2, despi
malfutka [58]

1) 4 forces

2) 165 N

3) 225 N

Explanation:

1)

There are in total 4 forces acting on the bicylist:

- The gravitational force on the byciclist, acting vertically downward, of magnitude mg, where m is the mass of the bicyclist and g is the acceleration due to gravity

- The normal force exerted by the floor on the bicyclist and the bike, N, vertically upward, and of same magnitude as the gravitational force

- The force of push F, acting horizontally forward, given by the push exerted by the bicylist on the pedals

- The air drag, R, of magnitude R = 60.0 N, acting horizontally backward, in the direction opposite to the motion of the bicyclist

2)

The magnitude of the net force on the bicyclist can be calculated by considering separately the two directions.

- Along the vertical direction, we have the gravitational force (downward) and the normal force (upward); these two forces are equal in magnitude, since the acceleration of the bicyclist along this direction is zero, therefore the net force in this direction is zero.

- Along the horizontal direction, the two forces (forward force of push and air drag) are balanced, since the acceleration is non-zero, so we can use Newton's second law of motion to find the net force on the bicylist:

F_{net}=ma

where

F_{net} is the net force

m = 75.0 kg is the mass of the bicyclist

a=2.20 m/s^2 is its acceleration

Solving, we find the net force:

F_{net}=(75.0)(2.20)=165 N

3)

In this part, we basically want to find the forward force of push, F.

We can rewrite the net force acting on the bicyclist as

F_{net}=F-R

where:

F is the forward force of push

R is the air drag

We know that:

F_{net}=165 N is the net force on the bicyclist

R = 60.0 N is the magnitude of the air drag

Therefore, by re-arranging the equation, we can find the force generated by the bicylicst by pedaling:

F=F_{net}+R=165+60=225 N

6 0
3 years ago
Two parallel plate capacitors 1 and 2 are identical except that capacitor 1 has charge +q on one plate and charge −q on the othe
Grace [21]

Answer:

a) the capacitance is the same for both capacitors.

b) The potential difference between the plates for the capacitor with charge +2q, is double of the one for the capacitor  with charge +q.

c) The electric field magnitude between the plates for the capacitor with charge +2q, is double of the one for the capacitor with charge +q

d) The energy stored between the plates for the capacitor with charge +2q, is 4 times the value for the one with charge +q  

Explanation:

a) The capacitance of a capacitor, by definition, is as follows:

C = \frac{q}{V}

Appying Gauss' Law to one of plates, it can be showed, that the capacitance (for a parallel plates capacitor) can be  expressed as follows:

C = ε*A / d

As it can be seen, it does not depend on the charge. so we conclude that the capacitance must be the same for both capacitors, due to they are identical except for the value of the charge on the plates.

b) By definition, as we said above, the capacitance is equal to the proportion between the charge of one of the plates, and the potential difference between them.

If this proportion must remain the same, and one of the capacitors has the double of  the charge than the other, the potential difference must be the double also.

c) Applying Gauss' law, to the surface of one of  the plates, and assuming a constant surface charge density σ, it can be  showed that the  electric field can be calculated as follows:

E*A = Q/ε₀ as σ=Q/A

⇒ E = σ/ε₀

As σ is directly proportional to the charge (being the area A the same), we conclude that the electric field for the capacitor with charge +2q must be the double than the one for the capacitior with charge +q.

c) The electric potential energy, stored between plates of a capacitor, can be written as follows:

Ue = \frac{1}{2} *\frac{q^{2}}{C}

If the capacitance remains the same, we can conclude that the electric potential energy for the capacitor with charge +2q, as the charge is raised to the 2nd power, must be 4 times the one for the capacitor with charge +q.

4 0
3 years ago
A proton is released from rest at the origin in a uniform electric field that is directed in the positive xx direction with magn
elena-s [515]

Answer:

The change in potential energy is  \Delta  PE =  -  3.8*10^{-16} \ J

Explanation:

From the question we are told that

     The  magnitude of the uniform electric field  is  E =  950 \ N/C

      The  distance traveled by the electron is  x =  2.50 \ m

Generally the force on this electron is  mathematically represented as

     F =  qE

Where F is the force and  q is the charge on the electron which is  a constant value of  q =  1.60*10^{-19} \ C

    Thus  

      F  =  950  * 1.60 **10^{-19}

      F  = 1.52 *10^{-16} \ N

Generally the work energy theorem can be mathematically represented as

          W =  \Delta  KE

Where W is the workdone on the electron by the  Electric field and  \Delta  KE  is the change in kinetic energy

Also  workdone on the electron can also  be represented as

        W =  F* x  *cos(  \theta )

Where  \theta  =  0 ^o considering that the movement of the electron is along the x-axis  

        So

             \Delta  KE  =  F  * x  cos  (0)

substituting values

         \Delta  KE  =  1.52 *10^{-16}  * 2.50   cos  (0)

          \Delta  KE   =  3.8*10^{-16} J

Now From the law of energy conservation

       \Delta PE  =  -  \Delta  KE

Where \Delta  PE is the change  in  potential energy  

Thus  

        \Delta  PE =  -  3.8*10^{-16} \ J

               

7 0
3 years ago
Other questions:
  • An 80-kg hiker climbs to the top of a tall hill and builds up 470,000 J of gravitational potential energy. How high did the hike
    15·2 answers
  • Gabriel is performing an experiment in which he is measuring the energy and work being done by a ball rolling down a hill.Which
    8·2 answers
  • A ballistic pendulum can be used to measure the speed of a projectile, such as a bullet. The ballistic pendulum consists of a st
    14·1 answer
  • A tennis ball pitching machine goes haywire and pitches at 10 rounds per second and the speed is an incredible 300m/s, what is t
    7·2 answers
  • Light passes straight through two polarizing filters in which the axis of polarization of the second filter is rotated 45 degree
    9·1 answer
  • A square plate of copper with 47.0 cm sides has no net charge and is placed ina region of uniform electric field of 75.0 kN/C di
    15·1 answer
  • An objec with a mass of 7 kg accelerates 5m/s2 when an unknown force is applied to it.what is the magnitude of the unknown force
    13·1 answer
  • Many people who have contracted a disease called chicken pox were told by their doctors that they would never have this
    5·1 answer
  • ___meaning two' sugar (or saccharide) units in a chain.
    5·1 answer
  • On a velocity vs. time graph, what does it mean when the line crosses over the x-axis?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!