Answer:
Explanation:
Fe⁺²(aq) + ClO₂(aq) → Fe⁺³(aq) + ClO₂⁻(aq)
Here oxidation number of Fe is increased from +2 to +3 , so Fe is oxidised .
The oxidation number of Cl is reduced from + 4 to +3 so Cl is reduced .
So ClO₂(aq) is oxidising agent and Fe⁺²(aq) is reducing agent .
Answer:
Distillation will generate the most cyclohexene.
Explanation:
Let us assume following attached reaction for the synthesis of cyclohexene from cyclohexanol which attains equilibrium after certain time.
As shown in figure the cyclohexanol upon treatment with phosphoric acid undergoes dehydration reaction (removal of water) and produces cyclohexene. On the other hand cyclohexene reacts with water (hydration reaction) and produces cyclohexanol.
Now, if this reaction is allowed in a single flask it will attain equilibrium and will not generate the cyclohexene in high quantity. On the other hand if we apply <em>Le Chatelier's principle</em> ( <u><em>removal of product moves the equilibrium in right direction</em></u>) and distillate cyclohexene (boiling the cyclohexene to convert it into vapors and then collect it after condensation) will move the reaction in forward direction and will allow us to generate cyclohexene in high amounts.
Fluorine in compounds is always assigned an oxidation number of -1
Answer:
B.3/5p
Explanation:
For this question, we have to remember <u>"Dalton's Law of Partial Pressures"</u>. This law says that the pressure of the mixture would be equal to the sum of the partial pressure of each gas.
Additionally, we have a <em>proportional relationship between moles and pressure</em>. In other words, more moles indicate more pressure and vice-versa.

Where:
=Partial pressure
=Total pressure
=mole fraction
With this in mind, we can work with the moles of each compound if we want to analyze the pressure. With the molar mass of each compound we can calculate the moles:
<u>moles of hydrogen gas</u>
The molar mass of hydrogen gas (
) is 2 g/mol, so:

<u>moles of oxygen gas</u>
The molar mass of oxygen gas (
) is 32 g/mol, so:

Now, total moles are:
Total moles = 2 + 3 = 5
With this value, we can write the partial pressure expression for each gas:


So, the answer would be <u>3/5P</u>.
I hope it helps!
It’s a 50 50 chance unless one parent has a dominate gene