Answer:
- <em>To balance a chemical equation it may be necessary to adjust the </em><u>coefficients.</u>
Explanation:
The <em>coefficients</em> of a <em>chemical equation</em> are the numbers that you put in front of each reactant and product. They are used to balance the equation and comply with the law of mass conservation.
By adjusting the coefficients you obtain the relative amounts (moles) of each product and reactant, i.e. the mole ratios.
Here an example.
The first information is what is called a word equation. E.g. nitrogen and hydrogen react to form ammonia:
- Word equation: hydrogen + nitrogen → ammonia
- Skeleton equation: H₂ + N₂ → NH₃
This equation shows the chemical formulae but it is not balanced. The law of mass conservation is not observed.
So, in order to comply with the law of mass conservation you adjust the coefficients as follow.
- Balanced chemical equation: 3H₂ + N₂ → 2NH₃
As you see, it was necessary to modify the coefficients. Now the law of conservation of mass is observed and you get the mole ratios:
- 3 mol H₂ : 1 mol N₂ : 2 mol NH₃
Cholesterol is an example of a lipid.
Answer:
AB + CD ----> AC + BD
Explanation:
If you think this reaction:
AB + CD ----> AC + BD
(Reactants) (Products)
All the statements are true.
Answer:
3 moles of CaO
Explanation:
The chemical balanced equation is;
2Ca + O₂ → 2CaO
The ratio of calcium(Ca) to Calcium Oxide(Cao) in this equation is 2:2.
Now, when 3 moles of calcium react with oxygen, Cao produced will be;
3 moles of O₂ × 2 moles of CaO/2 moles of Cao = 3 moles of CaO
Answer:
carbon atoms tend to make four bonds, each carbon atom will have the number of hydrogen atoms that are required for four bonds. This compound contains 16 hydrogen atoms for a molecular formula of C 8 H 16.
Explanation: