Answer:
The cis double bond present in unsaturated fatty acids acids results in lower melting point when compared to saturated fatty acids of the same chain length.
Explanation:
Melting point of a fatty acids are affected by the length and degree of unsaturation of the hydrocarbon chain.
At room temperature, saturated fatty acids with hydrocarbon chain lengths between 12-24 are waxy solids whereas unsaturated atty acids of the same chain length are liquids. This is due to the nature of the packing of the fatty acid molecules in the saturated and unsaturated compounds.
In the saturated compounds, the molecules are tightly packed side by side with minimal steric hindrance and maximal van der Waals forces of attraction between molecules. However, in unsaturated fatty acids, the cis double bond introduces a bend or kink in the molecules which then interferes with the tight packing of the molecules and reducing interaction between molecules. Therefore, less energy is required to cause a disorder in the arrangement of unsaturated fatty acids, leading to a lowering of melting point.
Answer:
220.42098 amu
Explanation:
(220 .9 X .7422) + (220 X .0.1278) + (218.1 X 0.13) = 220.42098 amu
These are weighted averages.
So, we will take mass of one and multiply by abundance percentage that is provided and add them together.
In order to calculate the average atomic mass, we have to convert the percentages of abundance to decimals. So, you get
(220 .9 X .7422) + (220 X .0.1278) + (218.1 X 0.13) = 220.42098 amu
The type of reaction caused by particle accelerators is called photo-fission reaction
Answer:
The answer is true
Explanation:
This process is called passive transport or facilitated diffusion, and does not require energy. The solute can move "uphill," from regions of lower to higher concentration. This process is called active transport, and requires some form of chemical energy.
Answer:
Explanation:
The speed of sound in the air mainly depends on temperature. At high altitudes, where it is much colder, sound travels slower. The higher the temperature, the faster the air molecules are moving to begin with, and the quicker they bump into each other as a sound wave passes through.