The reaction, 2 C4H10 (g) + 13 O2 (g) = 8 CO2 (g) + 5 H2O (g), is the combustion of butane. A combustion reaction involves the reaction of a hydrocarbon with oxygen producing carbon dioxide and water. This reaction is exothermic which means it releases energy in the form of heat. Therefore, as the reaction proceeds,a heat energy is being given off by the reaction. This happens because the total kinetic energy of the reactants is greater than the total kinetic energy of the products. So, the excess energy should be given off somewhere which in this case is released as heat.
Answer:
The answer is in the explanation.
Explanation:
The KHP is an acid used as standard in titrations to find concentration of bases as NaOH.
The reaction that explain this use is:
KHP + NaOH → KNaP + H2O
<em>where 1 mole of KHP reacts per mole of NaOH</em>
That means, at equivalence point of a titration in which titrant is NaOH, the moles of KHP = Moles of NaOH added
With the moles of KHP = Moles of NaOH and the volume used by titrant we can find the molar concentration of NaOH.
The moles of KHP are obtained from the volume and the concentration as follows:
Volume(L)*Concentration (Molarity,M) = moles of KHP
If the concentration is more or less than 0.100M, the moles will be higher or lower. For that reason, we need to know the concentration of KHP but is not necessary to be 0.100M.
The equilibrium constant expression for KSP of Sr3(PO4)2 is
KSP={(Sr^2+)^3 (PO4^3-)^2/ Sr3(PO4)2}
Explanation
write the ionic equation for Sr3(PO4)2
Sr3(PO4)2 → 3Sr^2+ + 2 PO4^3-
KSP is given by (concentration of the products raised to their coefficient /concentration of reactants raised to their coefficient)
The answer is a conjugate acid.
La diferensia es que los volcanes caseros no existen solo existen los verdaderos