Answer:
96.09 g/mol
Explanation:
You just need to first get the atomic weights of the elements involved. You can easily get these from your periodic table.
If you are going to do this properly, please use the weight with at least two decimal places for accuracy (e.g. 15.99 g/mol).
Also, please take note that I will be using the unit g/mol for all the weights. Thus,
Step 1
N = 14.01 g/mol
H = 1.008 g/mol
O = 16.00 g/mol
C = 12.01 g/mol
Since your compound is
(
N
H
4
)
2
C
O
3
, you need to multiply the atomic weights by their subscripts. Therefore,
Step 2
N = 14.01 g/mol × 2 =
28.02 g/mol
H = 1.008 g/mol × (4×2) =
8.064 g/mol
O = 16.00 g/mol × 3 =
48.00 g/mol
C = 12.01 g/mol × 1 =
12.00 g/mol
To get the mass of the substance, we need to add all the weights from Step 2.
Step 3
molar mass of
(
NH
4
)
2
CO
3
=
(28.02 + 8.064 + 48.00 + 12.01) g/mol
=
96.09 g/mol
this is a google search and a example i hope is helps to solve
Answer:
<span>Increasing concentration, temperature and surface area will increase the yield of products.
Explanation:
Concentration:
Increase in concentration of reactants will increase the number of reactants per unit volume. Therefore, the probability of collisions will increase hence, it will result in the increase in yield.
Temperature:
Increase in temperature increases the kinetic energy of reactants. Therefore, the increase in velocity of reactants results in the collisions with high energy. It makes it feasible for reactants to attain the optimum energy (activation energy) to convert into products with good yield.
Surface Area:
The reactants in grinded / powder form reacts fast as compared to solid form. In fact, grinding results in increase of the surface area of reactants. Greater surface area increases the probability of reactants to colloid. Hence, increases the yield.</span>
Answer:
Ask the teacher
Explanation:
Ask if you have to clean up or if you are not prepared for an experiment
Moles of calcium metal used = 100/40.1=2.5
Moles of HBr need to react = 5 moles
As the molar ratio is 1 is to 2 among them
so
Moles=molarity x volume
5=2.25 x volume
volume=2.22 litres of HBr required for this reaction
ANSWER IS 2.22 LITRES
Answer:
Now "q" is the heat and energy is the capacity of any object or body ton perform any work. So we can relate them if we take the term specific heat in consideration.
As specific heat is the the amount of heat required to raise the temperature of an object in specific from one degree Celsius, for ice it is 2.108 kJ/kgK.
Explanation:
- c = specific heat capacity,
- ΔT = change in temperature
So, we have:
- It is the ratio of the amount of heat energy transferred to an object to the resulting increase in temperature of the object.