Answer:
balanced in ACID not BASE
Cr2O7^2-(aq) +3Hg(l) +14 H^1+ ----> 3Hg^2+ + 2Cr^3+(aq) + 7H2O
Answer
Cr2O7^2-(aq) +3Hg(l) +14 H^1+ ----> 3Hg^2+ + 2Cr^3+(aq) + 7H2O
Explanation:
Cr2O7^2-(aq) + Hg(l) ----> Hg^2+(aqH) + Cr^3+(aq)
add H^1+ (acid) to capture the O and make 7 water molecules
Cr2O7^2-(aq) + Hg(l) + H^1+ ----> Hg^2+(aqH) + Cr^3+(aq) + 7H2O
Cr goes from +6 to +3 by gaining 3 e
Hg goes from 0 to +2 by losing 2 e
we need 3 Hg for every 2 Cr
so
Cr2O7^2-(aq) +3Hg(l) +14 H^1+ ----> 3Hg^2+ + 2Cr^3+(aq) + 7H2O
2 Cr on the right and left
Net 12 positive charges on the right and the left
3 Hg on the right and left
14 H on the right and left
the equation is balanced
we cannot balance the equation in a basic solution with OH^1-
we have plenty of O in the dichromate ion. we need to convert it to water which take free H^1+ from the acid
Answer:
answer is a because drugs do so to the person.
Answer:
The advantage of this technique is that purified water as well as deposited metals can be re-used. It is necessary to use an inert electrode, such as platinum, because there is no metal present to conduct the electrons from the anode to the cathode.
Answer:
B . Changing the material that the fluids container is made of
Explanation:
Changing the material of the container does not affect the pressure in a container whereas increasing the volume, changing the weight of the fluid, and heating/cooling the fluid will all change the pressure.
To obey the Law of Conservation of Mass, the sum of all individual elements of a compound is equal to the mass of the compound. So, if HCN has a mass of 7.83 grams, then
7.83 g = mass of H + mass of C + mass of N
We know the masses of H and N to be 0.290 g and 4.06 g, respectively. Hence, we can find for the mass of C:
7.83 = 0.29 + mass of C + 4.06
mass of C = 3.48 g
As an extension to the Law of Conservation of Mass, there is also a Law of Definite Proportions. According to Dalton's atomic theory, a compound is formed from a fixed ratio of its individual elements. From our previous calculations, we know that the mass ratio of H to C to N is 0.29 g: 3.48 g:4.06 grams. The ratio could also be expressed in percentages. Let's find the mass percentage of Carbon in HCN to be used later:
mass % of Carbon = (3.48 g/7.83 g)*100
mass % of Carbon = 44.44%
So, if you collect a different mass of HCN, say 3.37 g, the corresponding mass of Carbon is equal to:
Mass of Carbon = (3.37)(44.44%)
Mass of Carbon = 1.498 g