Depending on how the design is, The bridge will sway, bounce, or move in some way. If the bridge was too stiff the winds would destroy the bridge and cause it to crumble and fall.
Hope that answer works for you! :)
Answer:
The temperature is 30,92K
Explanation:
We use the formula PV=nRT. We convert the unit of pressure in kPa into atm.
101,325kPa----1atm
121kPa-------x=(121,3kPax 1 atm)/101,325kPa=1, 2 atm
PV=nRT---->T= (PV)/(RT)
T=(1,2 atm x 3L)/(1,42 mol x 0,082 l atm/K mol )= 30, 91721058 K
Answer:
30.8 grams of nitric acid are produced
Explanation:
Let's state the reaction:
3 NO₂ + H₂O → 2 HNO₃ + NO
If water is the excess reagent, then the limiting is the gas.
We convert the mass to moles:
45 g . 1 mol/ 46 g = 0.978 moles
Ratio is 3:2. 3 moles of gas can produce 2 moles of acid
Then, 0.978 moles may produce (0.978 . 2) /3 = 0.652 moles of acid
This is the 100% yield, but in this case, the percent yield is 75%
0.652 moles . 0.75 = 0.489 moles
Let's convert the moles to mass → 0.489 mol . 63g / 1mol = 30.8 g
Answer:
0.51
Explanation:
Given the Nernst equation;
E= E° - 0.0592/n logQ
E= 355 mV or 0.355 V
E° = 0.34 - 0= 0.34 V
n= 2(two electrons were transferred in the process)
Equation of the reaction;
H2(g) + Cu^2+(aq) -----> 2H^+(aq) + Cu(s)
Substituting values;
0.355 = 0.34 - 0.0592/2 log([H^+]/1)
0.355 - 0.34 = - 0.0296 log [H^+]
0.015/-0.0296 = log [H^+]
Antilog (-0.5068) = [H^+]
[H^+] = 0.311 M
pH = -log[H^+]
pH= - log(0.311 M)
pH = 0.51
The answer is longitudinal waves more particles at right angles