Answer:
The pressure on the wall is 9416.25 N/m²
Explanation:
Please see the attachments below
Answer:

Explanation:
Given that:
- moment of inertia of tucked body,

- rotational speed of the body,

- i.e.

- moment of inertia of the straightened body,

<u>Now using the law of conservation of angular momentum:</u>
angular momentum of tucked body=angular momentum of straight body



Given Information:
Initial speed of rock = vi = 30 m/s
escape speed of the asteroid = ve = 24 m/s
Required Information:
final speed of rock = vf = ?
Answer:
vf = 18 m/s
Explanation:
As we know from the conservation of energy
KEf + Uf = KEi + Ui
Where KE is the kinetic energy and U is the potential energy
0 + 0 = ½mve² - GMm/R
When escape speed is used, KEf is zero due to vf being zero. Uf is zero because the object is very far away from mass M, therefore, the equation becomes
GMm/R = ½mve²
m cancels out
GM/R = ½ve²
GM/R = ½(24)²
GM/R = 288
KEf + Uf = KEi + Ui
½mvi² + 0 = ½vf² - GMm/R
m cancels out
½vi² = ½vf² - GM/R
Substitute the values
½(30)² = ½vf² - (288)
½vf² = 450 - 288
vf² = 2(162)
vf = √324
vf = 18 m/s
Therefore, the final speed of the rock is 18 m/s
Answer:
all qn 1,2,3 have same answer ,. Yes,. hope it helps