Answer:
F = 120 N
Explanation:
Force x distance = energy
The bike has energy 1/2 . 80 . 6^2 = 1440 J
You are looking at an example of not reading the question properly.
Impulse = Force . time = change in momentum
F . 4 = 80 .6
F = 120 N
An object distance is
presented as s = 5f and we know that the mirror equation relates the image
distance to the object distance and the focal length.
The mirror equation is
1/f = 1/s + 1/s’ where the variable f stands for
the focal length of the mirror. Variable (s)
represents the distance between the mirror surface and the object and the
variable <span>(s’) represents the distance between the mirror surface and
the image. </span>
In addition, a concave mirror
will have a positive focal length (f) and a convex mirror will have a negative
focal length (f).
Now, we then have 1/f = 1/5f
+ 1/s’ which is s’ = 5f/4
Then we get the magnification
ratio that expresses the size or amount of magnification or reduction of the
object or image and to get the magnification, we use this equation: M= s’/s
M= 5f/4x5f
s’ = 1/4s
Therefore, the image height
is one fourth of the object height
Answer:
4
Explanation:
It has 8 O atoms and 4 O2(g) molecules
When acceleration is constant, the average velocity is given by

where
and
are the final and initial velocities, respectively. By definition, we also have that the average velocity is given by

where
are the final/initial displacements, and
are the final/initial times, respectively.
Take the car's starting position to be at
. Then

So we have

You also could have first found the acceleration using the equation

then solve for
via

but that would have involved a bit more work, and it turns out we didn't need to know the precise value of
anyway.
Sun-earth-moon in a straight line. Earth in the 'middle'.