Answer:

Explanation:
A 3-wire, 120/ 240 V circuit from a three-phase delta transformer contains two ungrounded conductors and one grounded conductor. The grounded conductor carries the unbalanced current when the circuit is not balanced.
A neutral conductor has the same equal potential between it and all ungrounded conductors of a 3-wire system.
The current on the neutral conductor is
percent of the ungrounded conductor current.
Answer:
7066kg/m³
Explanation:
The forces in these cases (air and water) are: Fa =mg =ρbVg Fw =(ρb −ρw)Vg where ρw = 1000 kg/m3 is density of water and ρb is density of the block and V is its density. We can find it from this two equations:
Fa /Fw = ρb / (ρb −ρw) ρb = ρw (Fa /Fa −Fw) =1000·(1* 21.2 /21.2 − 18.2)
= 7066kg/m³
Explanation:
Answer:
Final velocity of electron,
Explanation:
It is given that,
Electric field, E = 1.55 N/C
Initial velocity at point A, 
We need to find the speed of the electron when it reaches point B which is a distance of 0.395 m east of point A. It can be calculated using third equation of motion as :
........(1)
a is the acceleration, 
We know that electric force, F = qE

Use above equation in equation (1) as:


v = 647302.09 m/s
or

So, the final velocity of the electron when it reaches point B is
. Hence, this is the required solution.
Answer:

Explanation:
As we know that when battery is in open circuit then the potential difference of the cell is known as EMF
so EMF is given as

now when the battery is connected across a resistance of 200 ohm then there is current flowing through the battery
it is given as




Answer:
The process of producing electric energy or the amount of electric energy produced by transforming other forms of energy into electrical energy; commonly expressed in kilowatt-hours (kWh) or megawatt-hours (MWh). Electric power plant efficiency η is defined as the ratio between the useful electricity output from the generating unit, in a specific time, and the energy value of the energy source supplied to the unit in the same time period. For electricity generation based on steam turbines 65% of all prime energy is wasted as heat. The maximum theoretical energy efficiency is defined in more detail by the Rankine cycle. For modern practical systems this is about 40% but less for older generating plant. The efficiency falls still further if fuels with lower energy content such as biomass are used to supply the plant. The economics of power generation based on reciprocating engines depends to a large extent on the use to which the engine is to be put. The cheapest engines available are small petrol-driven engines based on car engines, which are manufactured in large numbers each year.
Explanation: