There are two N≡N bonds and three H–H bonds are in reactants.
Given:
The reaction between nitrogen gas and hydrogen gas.

To find:
Bonds on the reactant side
Solution:

Reactants in the reaction = 
The bond between nitrogen atoms in single
molecule = N≡N (triple bond)
Then in two
molecules = 2 N≡N (triple bonds)
The bond between hydrogen atoms in single
molecule = H-H (single bond)
Then in three
molecules = 3 H-H (single bonds)
Product in the reaction =
The bonds between nitrogen and hydrogen atoms in single
molecule = 3 N-H (single bond)
Then in two
molecules = 6 N-H (single bonds)
So, there are two N≡N bonds and three H–H bonds are in reactants.
Learn more about reactants and products here:
brainly.com/question/21517037?referrer=searchResults
brainly.com/question/20602904?referrer=searchResults
Answer:
The three statements are true
Explanation:
For the reaction:
I₂O₅(s) + 5CO(g) → I₂(s) + 5CO₂(g)
State oxidation of iodine in I₂O₅ is:
5 O²⁻ = 10⁻
As you have 2 I and the molecule has no charge, <em>oxidation state of I is +5</em>.
The carbon in CO has an oxidation state of +2 and in CO₂ is +4. That means <em>the carbon is oxidized</em>
<em />
An oxidizing agent is a substance that produce the oxidation of the agent that reacts with this one. CO is oxidized because of I₂O₅ is producing its oxidation being <em>the oxidizing agent</em>
<em></em>
Thus,<em> the three statements are true</em>.
Answer:
Explanation:
Mg + 2HCl = Mg Cl₂ + H₂
.594 g = .594 / 24.3
= .02444 mole
Heat evolved = msΔ T , m is mass of water ( solvant ) , s is specific heat of water , Δ T is rise in temperature
= 100 x 4.2 x ( 41.83 - 25 )
= 7068.6 J
.02444 mole of Mg evolves 7068.6 J of heat
1 mole of Mg evolves 7068.6 /.02444 J
= 289222.6 J
= 289 kJ .
Molar heat enthalpy = 289 kJ .
Answer:
The answer is: <em>carbon</em>
Explanation:
Organic molecules contain the chemical element carbon (C) in its structure. In this type of molecules, carbon is usually bonded to hydrogen (H), oxygen (O) and, with less frecuency, nitrogen (N). Therefore, in these molecules, carbon forms simple, double and triple bonds with itself. Examples of organic molecules that are very important in biology are carbohydrates, lipids, proteins and nucleic acids.
Answer:
56.2÷6.02×10^23
=9.34×10^23
Explanation:
Divide the given mass of the atom by the mass of an Atom (the avogadro's constant) to find the number of atoms in the given mass.