Explanation:
the pH of the solution defined as negatuve logarithm of
ion concentration.
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
1. Hydrogen ion concentration when pH of the solution is 11.
![11=-\log[H^+]](https://tex.z-dn.net/?f=11%3D-%5Clog%5BH%5E%2B%5D)
..(1)
At pH = 11, the concentration of
ions is
.
2. Hydrogen ion concentration when the pH of the solution is 6.
![6=-\log[H^+]'](https://tex.z-dn.net/?f=6%3D-%5Clog%5BH%5E%2B%5D%27)
..(2)
At pH = 6, the concentration of
ions is
.
3. On dividing (1) by (2).
![\frac{[H^+]}{[H^+]'}=\frac{1\times 10^{-11} mol/L}{1\times 10^{-6} mol/L}=1\times 10^{-5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH%5E%2B%5D%7D%7B%5BH%5E%2B%5D%27%7D%3D%5Cfrac%7B1%5Ctimes%2010%5E%7B-11%7D%20mol%2FL%7D%7B1%5Ctimes%2010%5E%7B-6%7D%20mol%2FL%7D%3D1%5Ctimes%2010%5E%7B-5%7D%20)
The ratio of hydrogen ions in solution of pH equal to 11 to the solution of pH equal to 6 is
.
4. Difference between the
ions at both pH:

This means that Hydrogen ions in a solution at pH = 7 has
ions fewer than in a solution at a pH = 6
Answer:
0.75 cal/g°c
Explanation:
for specific heat we have formula:
Amount of heat absorbed or released = mass x specific heat of a substance x change in temperature.
ΔQ=m x c x ΔT
where c= specific heat
m= mass of a substance
ΔT = total temperature
ΔQ = Amount of heat
so for specific heat,
c= ΔQ/mxΔT
c= 280/25x (25-10)
c= 280/375
c= 0.75 cal/g°c
1-pentyne consists of a carbon chain of 5 carbons one with a triple bond. 1-octyne is a carbon chain of 8 carbons with a triple bond at some point. It is known that the longer the carbon chain the higher the boiling point since more energy will be required to break the bonds between carbons. Based on this it is predicted that 1-octyne will have a higher boiling point than 1-pentyne.
Since the Summer solstice is when the sun is highest in the sky and the solstice is in June, that's your answer :)
Its C, Outermost Electrons.