Answer: The reaction is exothermic reaction as the energy of products is less than the energy of reactants.
Explanation: Exothermic reactions are defined as the reactions in which energy of the product is less than the energy of the reactants. The total energy is released in the form of heat and
for the reaction comes out to be negative.
Labeling of the parts in the diagram:
A represents the activation energy which is the energy required by reactants to cross the energy barrier to get converted to products.
E represents the potential energy of the reactants.
B represents the activated complex.
D represents the potential energy of the products.
C represents the total enthalpy change of the reaction, which comes out to be negative for exothermic reactions.

We need to crack molecules in
order for us to get the desired molecule. For example, in the extraction of
crude oil, after entering the fractional distillation, it will give products
base on their molecular structure. The products are gasoline, diesel fuel, jet
fuel, wax, asbestos,kerosene.
Explanation:
The given data is as follows.
Thickness (dx) = 0.87 m, thermal conductivity (k) = 13 W/m-K
Surface area (A) = 5
, 
According to Fourier's law,
Q = 
Hence, putting the given values into the above formula as follows.
Q = 
= 
= 5902.298 W
Therefore, we can conclude that the rate of heat transfer is 5902.298 W.
Answer:
0 g.
Explanation:
Hello,
In this case, since the reaction between methane and oxygen is:

If 0.963 g of methane react with 7.5 g of oxygen the first step is to identify the limiting reactant for which we compute the available moles of methane and the moles of methane consumed by the 7.5 g of oxygen:

Thus, since oxygen theoretically consumes more methane than the available, we conclude the methane is the limiting reactant, for which it will be completely consumed, therefore, no remaining methane will be left over.

Regards.