1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
barxatty [35]
3 years ago
14

Foce that arises due to attraction or repulsion of electronic charges is called​

Physics
1 answer:
nika2105 [10]3 years ago
8 0
Electrostatic force
You might be interested in
When a mass M hangs from a vertical wire of length L, waves travel on this wire with a speed V. What will be the speed of these
Zigmanuir [339]

Answer:

a)  v = 0.7071 v₀, b) v= v₀, c)  v = 0.577 v₀, d)   v = 1.41 v₀, e)  v = 0.447 v₀

Explanation:

The speed of a wave along an eta string given by the expression

          v = \sqrt{ \frac{T}{ \mu } }

where T is the tension of the string and μ is linear density

a) the mass of the cable is double

          m = 2m₀

let's find the new linear density

          μ = m / l

iinitial density

          μ₀ = m₀ / l

final density

          μ = 2m₀ / lo

          μ = 2 μ₀

we substitute in the equation for the velocity

initial            v₀ = \sqrt{ \frac{T_o}{ \mu_o} }

with the new dough

                    v = \sqrt{ \frac{T_o}{ 2 \mu_o} }

                    v = 1 /√2  \sqrt{ \frac{T_o}{ \mu_o} }

                    v = 1 /√2 v₀

                    v = 0.7071 v₀

b) we double the length of the cable

If the cable also increases its mass, the relationship is maintained

              μ = μ₀

   in this case the speed does not change

c) the cable l = l₀ and m = 3m₀

we look for the density

           μ = 3m₀ / l₀

           μ = 3 m₀/l₀

           μ = 3 μ₀

            v = \sqrt{ \frac{T_o}{ 3 \mu_o} }

            v = 1 /√3  v₀

            v = 0.577 v₀

d) l = 2l₀

            μ = m₀ / 2l₀

            μ = μ₀/ 2

           v = \sqrt{ \frac{T_o}{ \frac{ \mu_o}{2} } }

           v = √2 v₀

            v = 1.41 v₀

e) m = 10m₀ and l = 2l₀

we look for the density

             μ = 10 m₀/2l₀

             μ = 5 μ₀

we look for speed

             v = \sqrt{ \frac{T_o}{5 \mu_o} }

             v = 1 /√5  v₀

             v = 0.447 v₀

5 0
3 years ago
Why is figure 5 an unhelpful visualization tool for this data set? <br><br> Please help!
Paraphin [41]

Explanation:

Because the temperature and the radiation are not correlated, they're not represented as functions of each other, they're represented as independent variables thus using graph 5 you cannot figure out how one affect another

8 0
2 years ago
Four solid plastic cylinders all have radius 2.41 cm and length 5.94 cm. Find the charge of each cylinder given the following ad
Paladinen [302]

Answer:

Check explanation

Explanation:

QUICK NOTE: THE QUESTION IS NOT COMPLETE. Although it is not, we can make assumptions, since we only need values for the UNIFORM CHARGE DENSITY.

SO, LET US BEGIN;

To solve this question we are to use the equation (1) below;

Charge,Q = uniform charge density,p × Total area of the cylinder,A ------------------------------------------------------------------------(1).

From the question, we are given radius, R to be 2.41 cm and length, L to be 5.94 cm.

Step one: calculate for the total area of the cylinder, A.

Total area of the cylinder, A= area of the top surface + area of the buttom + area of the curved surface of the cylinder.

Hence, total area of the cylinder,A is;

==> πR^2 + πR^2 + 2πRL. -------------------------------------------------------------------------(2).

Then, total area of the cylinder,A is;

==> (L + R)2πR.

Step two: find the charge of each cylinder.

===> For the first cylinder; we have the uniform charge density to be 35 nC/m^2.

Therefore, the combination of equation (1) and (3) gives;

Charge Q= p × (L + R)2πR...----------------------------(4)

Hence, Q= 35 × [(5.94 + 2.41) 2× 3.143 × 5.94].= 10912.615 coulumb.

====> For the second cylinder, we have a uniform charge density of 50 nC/m^2.

Using equation (4), charge,Q= 15,589.45 Coulumb

=====> For THE third cylinder, the uniform charge density is 600, we make use of equation (4);

Charge,Q= 600×311.789.

Charge,Q= 187,073.4 coulumb.

====> For THE fourth cylinder, the uniform charge density is 750 nC/m^2.., we make use of equation (4);

Charge,Q= 233,841.75 coulumb.

7 0
3 years ago
A bullet of 10g strikes a sand bag at a speed of 100 m/s and gets embedded after travelling
Tasya [4]

Answer:

Solving for time :

(There are 4 formulas from linear motion. These formulas are very helpful as it allows us to prevent complicated calculations. Choose among the four that has : 1. The most constants known

2. The unknown constant that we want to solve)

s = (1/2)(u+v)t <--- one of the formulas

from linear motion

s (distance) = 0.05m

u (initial velocity) = 100m/s

v (final velocity) = 0 m/s (it stops)

t (time taken for change in velocity) = to be found

0.05 = (1/2)(100+0)t

t = 0.001 seconds

Solving for the resistant force :

Since the bullet hits the bag with an impulsive force and stops, the force that stops the bullet is the resistant force.

When the bullet stops :

F net = 0

F r = F imp

F r = (mu -mv)/t

F r = (0.01x100-0.01x0)/0.001

F r = 1/0.001

F r = 1000N

4 0
3 years ago
How to convert 40m/min to km/h? need step by step explanation​
Hitman42 [59]

Answer:

i have no clue i just need brailnly points

Explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • HELLO .................. OVER HERE ................ HELP NEEDED ............... The mass of 7.5 kg has weight of 30 N on a certa
    12·1 answer
  • A 60.0-kg ball of clay is tossed vertically in the air with an initial speed of 4.60 m/s. Ignoring air resistance, what is the c
    9·1 answer
  • Displacement vectors of 10 m west and 14 m west make a resultant vector that is ?
    15·1 answer
  • What phase difference between two otherwise identical traveling waves, moving in the same direction along a stretched string, wi
    10·1 answer
  • Please tell me the order the answers go. Best and most correct answer gets Brainliest.
    11·1 answer
  • How does energy from the Sun travel to Earth?
    12·2 answers
  • A 75.0 Ohm resistor uses 0.285 W of power. What is the voltage across the resistor?
    12·1 answer
  • In a single movable pulley, a load of 500 N is lifted by applying 300 N effort. Calculate MA, VR and efficiency.​
    9·1 answer
  • Based on the law of conservation of mass, if approximately 20g of water reacts in the following equation,
    7·1 answer
  • An object with a mass of 70.5 kg is placed on a 2-meter strand of metal (with a 2-millimeter radius) hanging from the ceiling. I
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!