Here, Initial momentum = mu = 5*1 = 5 Kg m/s
Final momentum = mv = 5*2 = 10 Kg m/s
So, Momentum has been increased from 5 Kg m/s to 10 Kg m/s. Hence, Your Final answer is option B
Hope this helps!
I think it is d I hope this help you if not let me know if it is not right
Answer:
<h3>The answer is 2.15 m/s²</h3>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

where
f is the force
m is the mass
From the question we have

We have the final answer as
<h3>2.15 m/s²</h3>
Hope this helps you
In addition to acceleration of gravity we experience centrifugal acceleration away from the axis of rotation of the earth. this additional acceleration has value ac = r w^2 where w = angular velocity and r is distance from your spot on earth to the earth's axis of rotation so r = R cos(l) where l = 60 deg is the lattitude and R the earth's radius and w = 1 / (24hr x 3600sec/hr)
<span>now you look up R and calculate ac then you combine the centrifugal acc. vector ac with the gravitational acceleration vector ag = G Me/R^2 to get effective ag' = ag -</span>
Answer:
A. speed = 7.14 Km/s
B. distance = 1820.7 Km
Explanation:
Given that: a = 14.0 m/
, t = 8.50 minutes.
But,
t = 8.50 = 8.50 x 60
= 510 seconds
A. By applying the first equation of motion, the speed of the shuttle at the end of 8.50 minutes can be determined by;
v = u + at
where: v is the final velocity, u is the initial velocity, a is the acceleration and t is the time.
u = 0
So that,
v = 14 x 510
= 7140 m/s
The speed of the shuttle at the end of 8.50 minute is 7.14 Km/s.
B. the distance traveled can be determined by applying second equation of motion.
s = ut +
a
where: s is the distance, u is the initial velocity, a is the acceleration and t is the time.
u = 0
s =
a
=
x 14 x 
= 7 x 260100
= 1820700 m
The distance that the shuttle has traveled during the given time is 1820.7 Km.