Answer:
T=+1.133N
Explanation:
Tension and weight are forces that have opposite directions
Weight is negative (downward)
W=m*g= 0.11kg*(-9.8m/s^2)
W= -1.078N
Tension is possitive (upward)
The total force will be the sum of both (the difference taking in consideration the direction)
Ft= T+W
Also the total force is the product of the mass due to acceleration:
Ft=m*a
Ft= +0.11kg*0.5m/s^2
Ft=+0.055N (upward)
Tension will be the difference between Ft and W:
T= Ft-W
T=+0.055N-(-1.078N)
T=+1.133N
Speed =distance/time
3.25=3.00/time
3.25xt=3.00
t=3/3.25
s=0.9s
-- The vertical component of the ball's velocity is 14 sin(<span>51°) = 10.88 m/s
-- The acceleration of gravity is 9.8 m/s².
-- The ball rises for 10.88/9.8 seconds, then stops rising, and drops for the
same amount of time before it hits the ground.
-- Altogether, the ball is in the air for (2 x 10.88)/(9.8) = 2.22 seconds
==================================
-- The horizontal component of the ball's velocity is 14 cos(</span><span>51°) = 8.81 m/s
-- At this speed, it covers a horizontal distance of (8.81) x (2.22) = <em><u>19.56 meters</u></em>
before it hits the ground.
As usual when we're discussing this stuff, we completely ignore air resistance.
</span>
Answer
given,
Tension of string is F
velocity is increased and the radius is not changed.
the string makes two complete revolutions every second
consider the centrifugal force acting on the stone
=
now centrifugal force is balanced by tension
T =
From the above expression we can clearly see that tension is directly proportional to velocity and inversely proportional to radius.
When radius is not changing velocity is increasing means tension will also increase in the string.