Answer:

the mass of body B must be greater than the mass of body A
Explanation:
Newton's second law establishes a linear relationship between the force, the mass of the body and its acceleration
F = m a
a = F / m
Let's analyze this expression tells us that the force is of equal magnitude for the two bodies, but body A goes faster than body B, this implies that it has more relationships
a_A > a_B
Therefore, for this to happen, the mass of body B must be greater than the mass of body A
Answer:
45 J
Explanation:
Assuming the level at which the ball is thrown upwards is the ground level,
We can use the equations of motion to obtain the maximum height covered by the ball and then calculate the potential energy
u = initial velocity of the ball = 3 m/s
h = y = vertical distance covered by the ball = ?
v = final velocity of the ball at the maximum height = 0 m/s
g = acceleration due to gravity = -9.8 m/s²
v² = u² + 2ay
0 = 3² + 2(-9.8)(y)
19.6y = 9
y = (9/19.6)
y = 0.459 m
The potential energy the ball will have at the top of its motion = mgh
mgh = (10)(9.8)(0.459) = 45 J
Hope this Helps!!!
Answer:
the car will slow down due to the change in speed