True
Because I know lol they make u type so much
Answer:
A. h = 2.15 m
B.
Pb' = 122 KPa
Explanation:
The computation is shown below:
a) Let us assume the depth be h
As we know that

After solving this,
h = 2.15 m
Therefore the depth of the fluid is 2.15 m
b)
Given that
height of the extra fluid is

h' = 0.355 m
Now let us assume the pressure at the bottom is Pb'
so, the equation would be

Pb' = 122 KPa
Answer:
8050 J
Explanation:
Given:
r = 4.6 m
I = 200 kg m²
F = 26.0 N
t = 15.0 s
First, find the angular acceleration.
∑τ = Iα
Fr = Iα
α = Fr / I
α = (26.0 N) (4.6 m) / (200 kg m²)
α = 0.598 rad/s²
Now you can find the final angular velocity, then use that to find the rotational energy:
ω = αt
ω = (0.598 rad/s²) (15.0 s)
ω = 8.97 rad/s
W = ½ I ω²
W = ½ (200 kg m²) (8.97 rad/s)²
W = 8050 J
Or you can find the angular displacement and find the work done that way:
θ = θ₀ + ω₀ t + ½ αt²
θ = ½ (0.598 rad/s²) (15.0 s)²
θ = 67.3 rad
W = τθ
W = Frθ
W = (26.0 N) (4.6 m) (67.3 rad)
W = 8050 J
A time-varying magnetic field can be caused by fluctuating electric fields.