Answer:
See the explanation
Explanation:
Given:
Distance of Firecrackers A and B = 600 m
Event 1 = firecracker 1 explodes
Event 2 = firecracker 2 explodes
Distance of lab partner from cracker A = 300 m
You observe the explosions at the same time
to find:
does event 1 occur before, after, or at the same time as event 2?
Solution:
Since the lab partner is at 300 m distance from the firecracker A and Firecrackers A and B are 600 m apart
So the distance of fire cracker B from the lab partner is:
600 m + 300 m = 900 m
It takes longer for the light from the more distant firecracker to reach so
Let T1 represents the time taken for light from firecracker A to reach lab partner
T1 = 300/c
It is 300 because lab partner is 300 m on other side of firecracker A
Let T2 represents the time taken for light from firecracker B to reach lab partner
T2 = 900/c
It is 900 because lab partner is 900 m on other side of firecracker B
T2 = T1
900 = 300
900 = 3(300)
T2 = 3(T1)
Hence lab partner observes the explosion of the firecracker A before the explosion of firecracker B.
Since event 1 = firecracker 1 explodes and event 2 = firecracker 2 explodes
So this concludes that lab partner sees event 1 occur first and lab partner is smart enough to correct for the travel time of light and conclude that the events occur at the same time.
<u>Hello and Good Morning/Afternoon</u>:
<em>Original Question: C₂H₅OH + __O₂ → __CO₂ + __ H₂O</em>
<u>To balance this equation</u>:
⇒ must ensure that there is an equal number of elements on both sides of the equation at all times
<u>Let's start balancing:</u>
- On the left side of the equation, there are 2 carbon molecule
⇒ but only so far one on the right side
C<em>₂H₅OH + __O₂ → 2CO₂ + __ H₂O</em>
- On the left side of the equation, there are 6 hydrogen molecules
⇒ but only so far two on the right side
C<em>₂H₅OH + __O₂ → 2CO₂ + 3H₂O</em>
- On the right side of the equation, there are 7 oxygen molecules
⇒ but only so far three on the left side
C<em>₂H₅OH + 3O₂ → 2CO₂ + 3H₂O</em>
<u>Let's check and make sure we got the answer:</u>
C<em>₂H₅OH + 3O₂ → 2CO₂ + 3H₂O</em>
<em> 2 Carbon ⇔ 2 Carbon</em>
<em> 6 Hydrogen ⇔ 6 Hydrogen</em>
<em> 7 Oxygen ⇔ 7 oxygen</em>
<u>Thefore the coefficients in order are</u>:
⇒ 1, 3, 2, 3
<u>Answer: 1,3,2,3</u>
Hope that helps!
#LearnwithBrainly<em> </em>
The choices are:
a. Normal Force
b. Gravity Force
c. Applied Force
d. Friction Force
e. Tension Force
f. Air Resistance Force
Answer:
The answer is letter e, Tension Force.
Explanation:
Force refers to the "push" and "pull" of an object, provided that the object has mass. This results to acceleration or a change in velocity. There are many types of forces such as <em>Normal Force, Gravity Force, Applied Force, Friction Force, Tension Force and Air Resistance Force.</em>
The situation above is an example of a "tension force." This is considered the force that is being applied to an object by strings or ropes. This is a type force that allows the body to be pulled and not pushed, since ropes are not capable of it. In the situation above, the tension force of the rope is acting on the bag and this allows the bag to be pulled.
Thus, this explains the answer.
Answer:
A new substance was formed
Explanation:
According to this question, a shiny and flexible metal called Magnesium (Mg) is burnt in air to produce a white powder that has no shiny or flexible properties, however, has more weight than the magnesium metal itself.
This is possible because a CHEMICAL CHANGE has occured, hence, a new substance has been formed. The formation of a new substance during the burning process (chemical reaction), induced the increase in mass.
Answer:
Angular momentum, 
Explanation:
It is given that,
Radius of the axle, 
Tension acting on the top, T = 3.15 N
Time taken by the string to unwind, t = 0.32 s
We know that the rate of change of angular momentum is equal to the torque acting on the torque. The relation is given by :

Torque acting on the top is given by :

Here, F is the tension acting on it. Torque acting on the top is given by :





So, the angular momentum acquired by the top is
. Hence, this is the required solution.