Answer:
4.33 L
Explanation:
Step 1: Given data
Initial volume of the balloon (V₁): 3.00 L
Initial pressure of the balloon (P₁): 765 torr
Final volume of the balloon (V₂): ?
Final pressure of the balloon (P₂): 530 torr
Step 2: Calculate the final volume of the balloon
If we consider Helium to behave as an ideal gas, we can calculate the final volume of the balloon using Boyle's law.

Considering that CCL3F gas behave like an ideal gas then we can use the Ideal Gas Law
<span>PV = nRT, however is an approximation and not the only way to resolve this problem with the given data..So,at the end of the solution I am posting some sources for further understanding and a expanded point of view. </span>
<span>Data: P= 856torr, T = 300K, V= 1.1L, R = 62.36 L Torr / KMol </span>
<span>Solving and substituting in the Gas equation for n = PV / RT = (856)(1.1L) /( 62.36)(300) = 0.05 Mol. This RESULT is of any gas. To tie it up to our gas we need to look for its molecular weight:MW of CCL3F = 137.7 gm/mol. </span>
<span>Then : 0.05x 137.5 = 6.88gm of vapor </span>
<span>If we sustract the vapor weight from the TOTAL weight of liquid we have: 11.5gm - 6.88gm = 4.62 gm of liquid.d</span>
Answer:
0.12 M
Explanation:
Step 1: Write the balanced equation
NaOH + HCl ⇒ NaCl + H₂O
Step 2: Calculate the reacting moles of NaOH
10 mL of a 0.30 M NaOH solution react.

Step 3: Calculate the reacting moles of HCl
The molar ratio of NaOH to HCl is 1:1. The reacting moles of HCl are 1/1 × 3.0 × 10⁻³ mol = 3.0 × 10⁻³ mol.
Step 4: Calculate the concentration of HCl
3.0 × 10⁻³ mol of HCl are in 25 mL of solution.
