The answer is: " 56 g CaCl₂ " .
__________________________________________________________
Explanation:
__________________________________________________________
2.0 M CaCl₂ = 2.0 mol CaCl₂ / L ;
Since: "M" = "Molarity" (measurement of concentration);
= moles of solute per L {"Liter"} of solution.
__________________________________________________________
Note the exact conversion: 1000 mL = 1 L .
Given: 250 mL ;
250 mL = ? L ? ;
250 mL * (1 L / 1000 L) = (250/1000) L = 0.25 L .
___________________________________________________________
(2.0 mol CaCl₂ / L ) * (0.25L) = (2.0) * (0.25) mol = 0.50 mol CaCl₂ ;
We have: 0.50 mol CaCl₂ ; Convert to "g" (grams):
→ 0.50 mol CaCl₂ .
___________________________________________________________
1 mol CaCl₂ = ? g ?
From the Periodic Table of Elements:
1 mol Ca = 40.08 g
1 mol Cl = <span>35.45 g .
</span>
There are 2 atoms of Cl in " CaCl₂ " ;
→ Note the subscript, "2", in the " Cl₂ " ;
__________________________________________________________
So, to calculate the molar mass of "CaCl₂" :
40.08 g + 2(35.45 g) =
40.08 g + 70.90 g = 110.98 g ; round to 4 significant figures;
→ round to 111 g/mol .
__________________________________________________________
So:
→ 0.50 mol CaCl₂ = ? g CaCl₂ ? ;
→ 0.50 mol CaCl₂ * (111 g CaCl₂ / mol CaCl₂) ;
= (0.50) * (111 g) CaCl₂ ;
= 55.5 g CaCl₂ ;
→ round to 2 significant figures;
→ 56 g CaCl₂ .
___________________________________________________________
The answer is: " 56 g CaCl₂ " .
___________________________________________________________
Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.
The properties of a compound are different than the properties of the element that forms it
Answer:
It's the oesophagus.
Explanation:
The worm digestive system consists of the pharynx, the esophagus, the crop, the intestine and the gizzard. The oesophagus is not mentioned. Thus, it's not part of the worm digestive system.