Answer:
The energy of a vibrating molecule is quantized much like the energy of an electron in the hydrogen atom. The energy levels of a vibrating molecule are given by the equation: En=(n+21)hv where n is a quantum number with possible values of 1, 2, ... and v is the frequency of vibration.
Explanation:
hope it helps.
have a wonderful day!
Answer:
9.4 liter
Explanation:
1) Data:
V₁ = 10.0 L
T₁ = 25°C = 25 + 273.15 K = 298.15 K
P₁ = 98.7 Kpa
T₂ = 20°C = 20 + 273.15 K = 293.15 K
P₂ = 102.7 KPa
V₂ = ?
2) Formula:
Used combined law of gases:
PV / T = constant
P₁V₁ / T₁ = P₂V₂ / T₂
3) Solution:
Solve the equation for V₂:
V₂ = P₁V₁ T₂ / (P₂ T₁)
Substitute and compuite:
V₂ = P₁V₁ T₂ / (P₂ T₁)
V₂ = 98.7 KPa × 10.0 L × 293.15 K / (102.7 KPa × 298.15 K)
V₂ = 9.4 liter ← answer
You can learn more about gas law problems reading this other answer on
Explanation:
C
This is because 10+5=15
15/45=0.3
Answer:
3.
D. Philippine Atmospheric, Geophysical and Astronomical Services
Administration (PAGASA)
Explanation:
4.C. 62.0 kph