Oxygen is the only element in that list, the rest are compounds.
Answer: B, the gas is being squeezed out of the liquid.
Explanation: The gas does not want to be trapped inside of the liquid, so it is trying to force it’s way out. Therefore creating more pressure in the container or whatever the liquid is being held in.
Answer:
C. If Assertion is true statement but Reason is false.
Explanation:
The burning of magnesium in air produces magnesium oxide as shown by the equation;
2Mg(s) + O2(g) -----> 2MgO(s)
The magnesium oxide solid is recovered as a white ash. This is a typical example of an oxidation reaction which is also a combustion reaction.
The reason has nothing at all to do with the assertion hence the answer given.
Magnesium oxide is basic just like the oxides of other metals and dissolves in water to yield an alkali.
Answer:
0.6749 M is the concentration of B after 50 minutes.
Explanation:
A → B
Half life of the reaction = 
Rate constant of the reaction = k
For first order reaction, half life and half life are related by:


Initial concentration of A = ![[A]_o=0.900 M](https://tex.z-dn.net/?f=%5BA%5D_o%3D0.900%20M)
Final concentration of A after 50 minutes = ![[A]=?](https://tex.z-dn.net/?f=%5BA%5D%3D%3F)
t = 50 minute
![[A]=[A]_o\times e^{-kt}](https://tex.z-dn.net/?f=%5BA%5D%3D%5BA%5D_o%5Ctimes%20e%5E%7B-kt%7D)
![[A]=0.900 M\times e^{-0.02772 min^{-1}\times 50 minutes}](https://tex.z-dn.net/?f=%5BA%5D%3D0.900%20M%5Ctimes%20e%5E%7B-0.02772%20min%5E%7B-1%7D%5Ctimes%2050%20minutes%7D)
[A] = 0.2251 M
The concentration of A after 50 minutes = 0.2251 M
The concentration of B after 50 minutes = 0.900 M - 0.2251 M = 0.6749 M
0.6749 M is the concentration of B after 50 minutes.